Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометрия многоканальное

Рис. 5.10. Полученное на экране многоканального анализатора распределение амплитуды импульсов Сг/с от проточного пропорционального счетчика кри-сталл-дифракционного спектрометра. Рис. 5.10. Полученное на экране <a href="/info/135010">многоканального анализатора</a> <a href="/info/860731">распределение амплитуды импульсов</a> Сг/с от <a href="/info/1595682">проточного пропорционального счетчика</a> кри-сталл-дифракционного спектрометра.

    Ранние исследования искры и дуги были выполнены Уитстоном в 1834 г. Примерно в 1850 г. искру стали получать, используя индукционную катушку Румкорфа. Дуговой и искровой разряды для эмиссионной спектроскопии применяли с 1920-х с их помощью стало возможным определять большинство элементов периодической таблицы в твердой пробе, т. е. было преодолено одно из ограничений спектроскопии пламени. Детектирование проводили при помощи фотопластинок. Позднее их заменили фотоумножителями. Коммерчески доступные приборы выпущены в конце второй мировой войны, а первый современный спектрометр прямой регистрации был выпущен в конце 1940-х. Следует отметить, что несмотря на значительную модернизацию различных приборов, основной принцип прямой регистрации не менялся вплоть до недавнего вьшуска многоканальных детекторов. [c.10]

    Из малогабаритных многоканальных фотоэлектрических спектрометров наибольшее распространение получил кван-тометр МФС-4. Он имеет вогнутую дифракционную решетку с 1800 штрих/мм и радиусом кривизны 1 м. Рабочая область спектра 200—360 нм. Прибор имеет 12 каналов, что позволяет одновременно определять содержание одиннадцати элементов. [c.70]

    Лучшими возможностями в этом отношении обладает дру гой тип фотоприемника — фотодиоды, например кремниевые. По своей чувствительности и временным характеристикам современные фотодиоды не уступают ФЭУ, проще в обращении и имеют меньшую стоимость, а главное — позволяют радикальным образом упростить задачу выделения из спектра нужных спектральных линий. Первые модели многоканальных спектрометров, снабженных детектором в виде фотодиодной линейки, уже начинают выпускаться промышленностью. [c.83]

    В спектрометрах с постоянным ускорением относительная скорость движения источника и поглотителя периодически меняется по линейному или гармоническому закону, что позволяет регистрировать исследуемый спектр в заданном интервале скоростей. Обычно в таких спектрометрах информация записывается в памяти многоканального анализатора, работающего во временном режиме, когда каналы памяти открываются синхронно с циклом скорости. [c.189]

    Спектрометрический анализ. Спектрометрический метод используют преимущественно для количественного анализа растворов или металлов. Часто интересуются определением только отдельных элементов. При одновременном присутствии нескольких элементов для каждого элемента необходимо иметь свой фотоэлектрический приемник (многоканальный спектрометр) или, используя эффективную автоматику, регистрировать аналитические линии определяемых элементов только одним приемником. В первом случае измерение интенсивностей всех линий происходит одновременно (установки прямого отсчета), во втором — последовательно, через небольшие интервалы-(установки последовательного отсчета). [c.195]


    В работе [13] рассмотрены возможности анализа угля с использованием источников Ре, ° d, Pu, Ат и полупроводникового 81 — и детектора с многоканальным спектрометром. Для Ре регистрировали рассеянное излучение и флуоресцентное излучение 81 и Са при применении Сс1 и Ри — когерентно и некогерентно рассеянное углем 7-излучение и флуоресцентное излучение Са, при использовании Ат — некогерентно рассеянное углем 7-излучение. Наименьшая погрешность определения зольности получена в первом случае. [c.35]

    Гамма-спектры снятых слоев стекломассы измеряли с помощью сцинтилляционного спектрометра, состоящего из кристалла Nal (Т1) размером 80 X 80 мм, фотоумножителя типа ФЭУ-56 и многоканального амплитудного анализатора NTA-512. [c.210]

    Для оценки угловой зависимости интенсивности рассеяния используют фотометрические системы с фотоумножителем как главным элементом (рис. 35.14) или же электронные сканирующие системы, в которых применяют оптический многоканальный анализатор или скоростной Сканирующий спектрометр (в этих обоих устройствах перед видиконом, предназначенным для регистрации колебаний интенсивности в зависимости от длины волны, целесообразно ставить монохроматор). [c.218]

    Термином диапазон одновременного приема обозначается часть спектра, которую можно измерить в любой момент времени. Для кристалл-дифракционного спектрометра будет измерено только то излучение, углы дифракции которого близки к выбранному углу Брэгга. Спектрометр с дисперсией по энергии, с другой стороны, имеет большой диапазон приема и, следовательно, будет обрабатывать все принятые импульсы. Однако термина одновременное обнаружение следует избегать, поскольку ранее было описано, что два фотона, входящие в детектор одновременно, фиксируются многоканальным анализатором ошибочно как один с суммарной энергией. [c.261]

    Другим обязательным компонентом 7-спектрометра служит многоканальный анализатор (МКА). Он состоит из аналого-цифрового преобразователя (АЦП) и блока памяти. АЦП преобразует аналоговый сигнал, т. е. амплитуду импульса, в эквивалентное число в двоичном коде, которое направляется в соответствующую ячейку (канал) памяти компьютерного типа. Это событие регистрируется в канале памяти как один отсчет. В блоке памяти МКА каждый канал представляет небольшой диапазон приращения энергии падающего 7-излучения ДКу. Число каналов может меняться от 512 до 16 384 (как степень 2), последнее обычно используют в 7-спектрометрии для многоэлементного анализа. Например, если один канал представляет диапазон энергии АЕу, равный 1 кэВ, память с 4096 каналами позволяет записать 7-спектр в диапазоне энергии 4096 кэВ. Максимальное содержимое канала памяти составляет [c.106]

    Для получения полных спектров в ультрафиолетовом и видимом диапазоне применяют либо двулучевые сканирующие системы, либо многоканальные. Спектрометры обоих типов работают в рамках выполнения закона Бера и используют монохроматичное излучение источника. Принципиальная схема спектрометров включает полихроматический широкополосный источник спектра, монохроматор (в основном дифракционные решетки), кювету с исследуемым образцом, детектор, электронные устройства, а также компьютер для обработки и хранения данных. Кювета с образцом может располагаться либо [c.150]

    Однако при спектрофотометрировании отдельных узких спектральных интервалов СПА сохраняет преимущества многоканальных спектрометров, избегая некоторых недостатков интерференционного ИК-спектрометра. [c.37]

    В 1959 г. опубликована отечественная работа, в которой приводится описание используемого для измерений многоканального у-спектрометра и результатов определения содержания 11 (Ка и ТЬ) в рудах, причем исследования проводились как на равновесных урано-ториевых и урановых рудах, так и неравновесных рудах [85]. [c.245]

    Предел чувствительности метода с применяемым многоканальным у-спектрометром по разработанной методике измерения составлял 0,01 % и. [c.245]

    В атомно-абсорбционном анализе применяют одно-, двух- и многоканальные спектрометры. Для увеличения стабильности работы и уменьшения влияния источников погрешностей измерения на результаты анализа применяют луч сравнения, которым может быть немонохроматический свет от лампы полого катода или какая-нибудь нерезонансная спектральная линия. Чаще используют для этих целей резонансную линию, которую выделяют с помощью осветительной системы (рис. 30.25). Свет лампы полого катода / попадает на светоделитель 2, который разделяет его на два потока одинаковой интенсивности. Один из них проходит через слой атомизированных ионов в ячейке 4. С помощью системы зеркал оба потока могут быть сфокусированы на щель б прибора. Модулятор— вращающееся секторное зеркало 5 — попере- [c.703]

    Сравнительно недавно для анализа горных пород, почв и других природных объектов стали применять многоканальные спектрометры с фотоэлектрической регистрацией спектра — квантометры [241]. При анализе природных объектов преобладают образцы меняющегося состава, и поэтому трудности при программировании работы квантометров возрастают. Однако опыт работы с этими приборами показывает их преимущества. [c.81]


    Большое разнообразие систем 81 (Ы)-спектрометр — многоканальный анализатор исключает необходимость специальных инструкций для надлежащей их установки и проверки, которые были бы применимы ко всем приборам. Фирма-изготовитель поставляет специальные инструкции по надлежащей установке и регулировке прибора. Действотельную установку приходится выполнять самому исследователю. В этом разделе приводятся некоторые общие принципы и соображения, дополняющие инструкции фирм-изготовителей, которые освещают критические моменты в работе таких систем. [c.265]

    Регистрируя характеристическое излучение с помощью фотоэлемента шш фотоэлектронного умножителя, получаюх электрический см-нал, который усиливают, детектирую, интегрируют и измеряют (спектрометр, многоканальный спектрометр - квантометр).Это наиболее совершенный, экспрессный и точный способ рехистрации спектральных линий. [c.14]

    Для концентрирования Сз из разбавленных водных растворов применяют соосаждение с ф эроцианидами N1, Си, 2п, Ре, Со, Са и М , Обычно радиоизотопы цезия вьщеляют последовательным осаждением кремневольфраматов, кобальтинитритов и перхлоратов Дополнительную очистку проводят с помощью Ре(ОН)з, Предел обнаружения метода (3-5) 10 Ки/препарат, Измерение активности радионуклидов ( " С5, С8, С5) проводят на многоканальном у-спектрометре в диапазоне энергий 0-1700 кэВ, Метод применим для определения радиоизотопов Сз в морской и пресной воде, в атмосферных осадках, в аэрозол1.ных пробах, а также в пробах биологического происхождения после их соответствующей обработки, В водных пробах с низкой удельной активностью необходимо провести предварительное концентрирование цезия. [c.308]

    Для очистки и вьщеления Ри также применяют в основном экстракционные методьг Больщинство из них базируется на различиях в растворимости нитратов в органических растворителях. Нитраты Ри хорошо извлекаются спиртами, эфирами, кетонами и кислородсодержащими фосфорорганическими соединениями. В частности, практически полностью плутоний извлекается трибутилфосфатом. Варьгфуя условия экстракции, его можно отделить от большей часги элементов, экстрагируемых этим реагентом. Измерение активности препарагов Ри проводят на многоканальных (х-спектрометрах в диапазоне энергий 4800-5700 кэВ по площадям пиков полного поглощения а-частиц с энергиями 5450 ( Ри) и 5150 (" "Ри) кэВ. [c.310]

    Методом характеристических потерь энергии электронами (Ер=200 эВ) с угловым разрешением изучена пространственная дисперсия плазмонов в графите в интервале квазиимпульсов 0-ь 16 нм . Спектры ХПЭ получены в ФТИ им. А.Ф. Иоффе РАН. Все эксперименты выполнялись с помощью многоканального электронного спектрометра с угловым разрешением [1] с оригинальным дисперсионным энергоанализатором типа коническое зеркало [2]. Угловое разрешение прибора по полярному углу 0 и азимутальному углу <р было одинаковым (1.5 х1.5"). Значения полярньсх углов 0, определялось с точностью 0.5 . Угол падения первичного пучка электронов на образец 0=50°. Углы сбора неупруго рассеянных электронов составляли 15-55". Анализатор работал в режиме постоянного абсолютного энергетического разрешения ДЕ=0.6 эВ и был настроен на энергию пропускания 30 эВ. Измерения проведены на образцах высокоориентированного пирографита (НОРС). Определение энергии л- и о-плазмонов проведено с использованием формализма Крамерса-Кронига [3]. Величина переданного импульса (q - это квазиимпульс л-электронов) определена по следующей формуле = , [c.48]

    Выпускают фотоэлектрические спектрометры двух типов сканирующие и многоканальные. Приборы первого типа имеют на выходе щель, иа которую последовательно выводят аналитические линии всех определяемых элементов, что ограничивает скорость анализа. Для одновременного определения содержания всех элементов в анализируемой пробе необходимо из спектра выделить соответствующее число линий разных элементов. Для этого в фокальной поверхности спектрального прибора устанавливают соответствующее число выходных щелей. Прибор такого типа называют иолихроматором или кваитометром. [c.70]

    Многоканальные фотоэлектрические спектрометры (каантометры) широка применяют а промышленности для экспрессного и маркировочного анализа металлов и сплавов. Типичная функциональная схема квантометра показана на рис. 3.31, Спектральный прибор представляет собой полихроматор, в котором входная ш,ель, вогнутая дифракционная решетка и передвижные выходные щели расположены по кругу Роуланда. Излучение источника света, работающего в атмосфере инертного газа, растровым конденсором направляется через входную щель на дифракционную решетку с радиусом кривизны 1—2 м и числом штрихов до 2400 на 1 мм. Дифракционная решетка разла- гает излучение в спектр и фокусирует его по дуге АВ. Выходные щели выделяют из этого спектра нужные линии. За выходными щелями расположены зеркала, направляющие выделенные излучения на фотокатоды фотоумножителей. [c.133]

    Современные атомно-абсорбционные спектрометры снабжены мини-ЭВМ и цифропечатными устройствами. Многоканальные приборы типа квантометров позволяют выполнять до 600 определений в час. [c.648]

    Примерами Н. а. на произ-ве могут служить автоматизир. системы аналит. контроля (АСАК) на базе многоканальных рентгеновских спектрометров в металлургии, нек-рые виды анализа объектов микроэлектроники. Ю. л. Карпов. [c.220]

    Необходимо отметить, что прямое влияние наводки заземления может и не проявляться в спектре с многоканального анализатора, но оно может все равно оказывать вредное влияние на другие важные аналитические функции, особенно на коррекцию мертвого времени. Оператор спектрометра с диспероией по энергии не должен полагаться на то, что схема коррекции мертвого времени должна всегда работать прав ильно. После начальной установки необходима периодическая проверка точности коррекции мертвого времени. [c.236]

    Различают последовательный и одновременный приборы РФСВД. Последовательный (или одпокапальный) прибор имеет один гониометр. Концентрацию различных элементов определяют, перемещая гониометр на нужный угол 2в и измеряя интенсивность флуоресценции в течение времени интегрирования от 1 до 100 с. Следователыю, полное измерение может занимать до 30 мин для сложной многоэлементной пробы. В одновременном (или многоканальном) приборе этот недостаток преодолевают размещением нескольких комбинаций кристалл-детектор (подобно полихроматорам в УФ-видимой атомной эмиссии) с фиксированными углами 2в вокруг пробы. Некоторые приборы имеют до 30 каналов. Многоэлементный анализ для фиксированного набора элементов можно выполнить за время от нескольких секунд до нескольких минут. Приборы такого типа идеально подходят для управления процессами, например, в производстве стали. Существуют также комбинированные приборы с одним последовательным и ограниченным числом фиксированных спектрометров. Наглядное изображение такой конфигурации приведено на рис. 8.3-14. [c.77]

    В многоканальных системах последовательность детекторов — матричный детектор, состоящий, как правило, из 316 кремниевых диодов, — позволяет достичь разрешения до 2 нм во всем спектральном диапазоне от 200 до 820 нм. Поскольку интенсивность излучения во всем диапазоне измеряется одновременно, время измерения уменьшается в 316 раз или, при том же времени измерения, что и для сканирующей системы, отношение сигнал/шум увеличивается в 316 раз. Это преимущество мультидетектирующей системы можно считать виглгрышем многоканалъности. Поскольку при этом не требуется узких щелей, светосила спектрометра с матричным детектором гораздо выше, и для полного УФ/вид.-диапазона от 200 до 780 нм достаточно одного источника излучения — дейтериевой лампы выигрыш в светосиле). [c.151]

    Быстрое увеличение числа различных типов спектральных приборов создает затруднения даже для опытного спектроскописта. Тем не менее общие принщ1пы, заложенные в их конструкции, вполне доступны для понимания. Кратко обсудим существующие в настоящее время системы ИК-спектрометров, чтобы читатель при желании мог без больших затруднений ориентироваться в более подробных описаниях. Для начала было бы полезно приспособить схему Вайнфорднера, предложенную для классификащ1и приемников излучения [86], к классификащ1и спектрометров, как показано на рис. 2.1. Приборы, в которых информация накапливается последовательно во времени, называют сканирующими. По мере сканирования каждого спектрального элемента информация накапливается с помощью одноканального приемника. Приборы с пространственным разделением, использующие многоканальные приемники, в средней ИК-области практически не применяются примером такого прибора в видимой области служит спектрограф, регистрирующий спектр на фотопластинку. Многоканальные спектрометры — это такие приборы, в которых одноканальный приемник одновременно получает много сигналов, соответствующих различным элементам спектра. Эти сигналы проходят через один канал, но расшифровываются таким образом, что дают информацию о каждом отдельном спектральном элементе. [c.16]

    Термин многоканальный (мультиплексный) заимствован из теории связи, где он означает систему передачи многих потоков информации одновременно по одному каналу. Многоканальные спектрометры привлекательны своей способностью использовать энергию ИК-излучения гораздо эффективнее, чем более распространенные спектрометры с последовательным (по времени) диспергированием. Выигрыш у многоканальных спектрометров или выигрыш Фелжетта [24] обусловлен тем, что длины всех волн измеряются одновременно, т. е. отсутствует выходная щель (которая задерживает приблизительно 99,9% излучения). Преимущество многоканального спектрометра можно количественно оценить и с другой точки зрения. В экспериментальном измерении, характеризующемся случайным шумом, отношение сигнал/шум можно повысить, повторяя измерения N раз. Полезный сигнал будет увеличиваться пропорционально числу измерений М, но шум, частично усредняясь, возрастет только в /м раз. Таким образом, выигрыш [c.34]

    С помощью недисперсионного рентгенофлуоресцентного спектрометра ШАХ модель 311 В проводят анализ стандартных силикатных пород [764]. Прибор снабжен кремниевым полупроводниковым детектором 3 мм X 30 мм с разрешением 185 эв — 5,9 кэв и соединен с многоканальным анализатором. При определении хрома в качестве радиоизотопного источника использован Подготовка проб для анализа включает прессование таблеток расплавленных проб с добавлением Li2B407 и LajOg в виде порошка. Преимущество метода заключается в быстром проведении анализа. Описана методика применения данного метода для анализа хромистых и марганцевых руд [528]. С целью учета эффекта взатгаого [c.115]

    Для одновременного определения Вг, С1, С, F, Н, J, N и S в органических веществах навеску 2—3 мг сжигают в токе Oj в присутствии Pt-катализатора и небольшую часть газа направляют для измерения в квадрупольный масс-спектрометр, позволяющий путем быстрого сканирования регистрировать 12 отношений т/е. С помощью многоканального устройства сигналы раздельно интегрируются, и результаты фиксируются сразу в процентах. Анализ длится всего 2 мин. Абсолютная погрешность определения брома в модельном соединении gHg IBr составила 1% [651]. [c.159]


Смотреть страницы где упоминается термин Спектрометрия многоканальное: [c.152]    [c.308]    [c.111]    [c.34]    [c.393]    [c.512]    [c.205]    [c.280]    [c.297]    [c.25]    [c.151]    [c.34]    [c.244]    [c.25]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Импульсная развязка многоканальный спектрометр

Многоканальные спектрометры с фиксированными выходными щелями

Спектрометр атомно-эмиссионный многоканальные детекторы

Спектрометр рентгеновский многоканальный

Спектрометрия в видимой многоканальная система

Спектрометры многоканальные



© 2025 chem21.info Реклама на сайте