Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Начала термодинамики

    Для твердого состояния различие между Ср и с незначительно, хотя эта зависимость для своего аналитического выражения требует привлечения второго начала термодинамики. [c.32]

    Используя уравнение первого начала термодинамики, можно вывести формулу Майера в несколько другом виде, чем выражение (П.5), а именно [c.32]

    Математическое выражение энтальпии получено из основного уравнения (общего выражения первого начала термодинамики) в виде [c.70]


    Таким образом, широко используемая математическая формулировка второго начала термодинамики может быть представлена либо в интегральной форме [c.75]

    Второе начало термодинамики говорит о том, что самопроизвольно теплота передается от тела с более высокой температурой к телу с более низкой температурой и никогда наоборот. Получение же холода связано как раз с передачей теплоты от менее нагретого тела к более нагретому, т. е. с переносом теплоты с низшего температурного уровня на высший. Такой перенос возможен только с затратой работы. В качестве переносчика теплоты с низшего температурного уровня на высший используется специальное рабочее вещество-хладагент, совершающее круговой процесс. Идеальным круговым процессом является обращенный цикл Карно (рис. 39). [c.121]

    Выражение первого начала термодинамики для любого фиксированного состояния рабочего тела в процессе сжатия [c.142]

    Третье начало термодинамики (теорема В. Нернста [12] с учетом постулата М. Планка [13]) утверждает, что в изолированной системе при Т О К энтропия стремится к некоторой постоянной величине 3 8 , не зависящей от характера воздействия на систему. В частности, если при Т = ОК система находится в устойчивом равновесии, то 8 = 0. Это означает, что при абсолютном нуле теплоемкость системы Су = О, откуда следует, что невозможно осуществить такой процесс, в результате которого система достигнет абсолютного нуля, хотя к этому значению можно приблизиться сколь угодно близко. Поэтому третье начало известно как принцип недостижимости абсолютного нуля температур. [c.26]

    Неясность физического содержания псевдопотенциала отмечалась еще Д. Гиббсом [99] В математическом отношении химический потенциал вполне определенная величина химический потенциал есть частная производная от характеристической функции по числу молей компонента. Но одновременно химический потенциал не имеет очевидного физического смысла. Происходит это по той причине, что начала термодинамики установлены лишь для закрытых систем . [c.119]

    Термодинамические расчеты химических процессов основаны на применении к ним соотношений I и II начал термодинамики. Выполнение исследователем расчетов по готовым формулам, приводимым в литературе, всегда несет опасность того, что не те цифры будут подставлены не в ту формулу, и это приводит незаметно для исследователя к бессмысленному или неверному результату. [c.10]

    Уравнение (1.1) —аналитическая запись первого начала термодинамики для закрытой ТС, т. е. по существу аналитическая запись закона сохранения энергии. В соответствии с этой записью положительными считаются тепло, подводимое к ТС, и, работа, совершаемая ТС. Внутренняя энергия U определяется состоянием ТС, ее небольшое изменение — это дифференциал функции состояния. При переходе из состояния 1 в состояние 2 изменение внутренней энергии [c.11]


    Таблица 1. Основные соотношения I начала термодинамики [c.12]

    Следствия из I начала термодинамики [c.13]

    Термохимические расчеты основаны на применении к химическим процессам соотношений, вытекающих из I начала термодинамики. Основной закон термохимии — закон Гесса можно обосновать следующим образом. [c.16]

    Второе начало термодинамики вводит новую функцию состояния — энтропию 5. Оно показывает, что для закрытой ТС с одинаковой для всех точек температурой Т справедливо [c.19]

    Уравнения (1.7) и (1.8) объединяют соотношения I и И начал термодинамики, это так называемые обобщенные формы записи начал термодинамики. [c.20]

Таблица 2. Основные соотношения, вытекающие из II начала термодинамики для сложной термодинамической системы, в которой изменяются массы компонентов Таблица 2. <a href="/info/351651">Основные соотношения</a>, вытекающие из II <a href="/info/2424">начала термодинамики</a> для <a href="/info/856117">сложной термодинамической</a> системы, в которой изменяются массы компонентов
    Следствия из II начала термодинамики [c.30]

    Использование таких таблиц требует иногда умения пересчитывать приводимые в них функции для состояния идеального газа к тому состоянию вещества, в котором оно участвует в физико-химическом процессе. По существу приходится возвращаться к тем расчетам, которые выполнены при составлении таблиц, но не могут быть даны в них из-за ограниченности объема. Пересчет осуществляют с использованием следующих соотношений, вытекающих из I и II начал термодинамики для 1 моль вещества. [c.45]

    Есть несколько равноценных формулировок второго начала термодинамики  [c.44]

    Для корректного решения задач создания энергосберегающих производств последнее время широко используется термодинамический подход, позволяющий оценить качество энергоресурсов. Наиболее перспективной основой для проведения такого анализа и оптимизации ЭТС является эксергетическая концепция, вытекающая из второго начала термодинамики. [c.414]

    Второе начало термодинамики позволяет сформулировать отдельные положения, которые указывают пути исследований по созданию энергетически оптимальных схем. К ним относятся использование тепла экзотермических реакций для обеспечения системы энергией использование внутренней движущей силы для ведения процесса (примером может служить установка по разделению воздуха и использование эффекта Джоуля—Томпсона) использование тепла на уровне его получения и ведение процесса при температуре, по возможности близкой к температуре окружающей среды (в этой связи следует заметить, что тепловой насос термодинамически неэффективен, так как создает большой градиент температур). [c.488]

    Идеи кинетической природы теплоты в свою очередь позволили Ломоносову доказать необходимость существования наибольшей и последней степени холода (т. е предельно низкой температуры, которую мы называем теперь ее абсолютным нулем), отвечающей полному прекращению вращательного движения частиц. Эти же идеи дали ему основание установить невозможность самопроизвольного перехода теплоты от более холодного тела к более теплому, что в наше время является одной из формулировок второго начала термодинамики. [c.14]

    Анализ ХТС при помощи материальных и тепловых балансов позволяет учесть внешние потери энергии (потери тепла с охлаждающей водой, потери целевого продукта и т. д.), но не позволяет выявить источники внутренних потерь (изменение энтропии) и оценить эффективность или степень совершенства отдельных элементов и всей схемы в целом, так как совершенство того или иного термодинамического процесса можно оценить лишь на основе второго начала термодинамики. Для этого на основе количественных балансов составляется и решается [c.299]

    В торое начало термодинамики. Энтропия, Абсолютная энтропия, ее вычисление, [c.28]

    Первое начало термодинамики в приложении к компрессорной машине может быть выражено уравнением [c.31]

    Процедурные знания — это сведения о совокупности конкретных процедур, этапов или шагов поиска целесообразных решений в новой ситуации, представленных либо на ЕЯ, либо на некотором формализованном языке (ФЯ). К процедурным знаниям в области химической технологии относятся, например, закон действия масс принцип Ле Шателье законы равновесия составов фаз гетерогенных систем законы сохранения массы, энергии, импульса и момента количества движения закон Гесса законы (начала) термодинамики физико-химические и технологические принципы наилучшего использования движущей силы ХТП, наиболее полного использования сырья и энергии в ХТС, наилучшего использования оборудования ХТС и др. алгоритмы расчета состава смесей веществ, расчета массы и объемов веществ, мольной теплоты образования соединений при химических реакциях системы уравнений математических моделей ХТП и ХТС алгоритмы анализа и оптимизации ХТП и ХТС тексты технологических регламентов и др. [c.32]


    Лекция 12. Обратимые и необратимые процессы, циклы. Тепловые двигатели и холодильные машины. Цикл Карно и его КПД. Второе начало термодинамики, необратимый цикл Карно. [c.164]

    Лекция 5, Равновесные, неравновесные, обратимые и необратимые процессы. Второе начало термодинамики. Энтропия и термодинамическая вероятность состояния системы. [c.209]

    Закон Гесса, являющийся следствием первого начала термодинамики, формулируется следующим образом. Тепловой эффект химической реакции простых веществ зависит от исходного и конечного состояний системы и не зависит от пути, по которому протекает реакция. [c.623]

    Выдающихся успехов в этой области достигли английский физик Джеймс Прескотт Джоуль (1818—1889) и немёикие физики Юлиус Роберт Майер (1814—1878) и Герман Людвиг Фердинанд Гельмгольц (1821—1894). К 40-м годам прошлого столетия в результате проведенных ими работ стало ясно, что в процессе перехода одной формы энергии в другую энергия не создается и не исчезает. Этот принцип получил название закона сохранения энергии, или первого начала термодинамики. [c.108]

    Понятие абсолютный ш/ль — спмая низкая из возможных температур — впертые было введено Томсоном (лордом Кельвином) в 1848 г. В признание его приоритета шкала абсолютных температур получила название шкалы Кельвина. В 190(1 г. Нернст показал, что при стремлении температуры к абсолютному нулю все изм- нения состояния системы пе изменяют ее энтропии (третье начало термодинамика), или, другими словами, при помощи конечной последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю. [c.122]

    Второе начало термодинамики. Сади Карн о—В. Т о м с о н-К е л ь- [c.597]

    Второе начало термодинамики позволяет ввести новые важные функции состояния энергию Гельмгольца F = LJ—TS и энергию Гиббса G = H—TS = U + pv—TS = F+pv. Величины F и G удобны для определения возможностей протекания процессов в неизолированных системах. Для самопроизвольных неравновесных процессов при Т, и— onst справедливо dF = —6Q <0, а при Т, р — onst dG = —6Q <0, т. е. в самопроизвольных неравновесных процессах F и G уменьшаются. [c.20]

    Постулат Планка (П1 начало термодинамики), устанавливающий, что при О К энтропия идеального кристаллического тепла равна нулю, позволяет определить абсолютную величину энтропии вещества при любых 7 и р на основе термохимических 313мерений и уравнения состояния. [c.53]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    При недостаточно критическом применении второго закона термодинамики из него можно сделать принципиально неправильный вывод. Согласно второму закону, в изолированной системе во всех обратимых- процессах энтропия не претерпевает изменений, а в необратимых только возрастает. Поэтому, если течение необратимых процессов не исключено, то энтропия такой системы может только возрастать, и это возрастание должно сопровождаться постепенным выравниванием температуры различных частей системы. Если рассматривать вселенную в целом как систему изолированную (не вступающую ни в какое-взаимодействие с другой средой), то можно заключить, что возрастание энтропии должно привести в конце концов к полному выравниванию температуры во всех частях вселеггной, что означало бы, с этой точки зрения, невозможность протекания каких-нибудь процессов и, следовательно, тепловую смерть вселенной . Такой вывод, впервые четко сформулированный в середине XIX в. Клаузиусом, является идеалистическим, так как признание конца существования (т. е. смерти ) вселенной требует признаиид и ее возникновения. Статистическая природа второго начала термодинамики не позволяет считать его универсально применимым к системам любых размеров. Нельзя утверждать также, что второй закон применим к вселенной в целом, так как в ней возможно протекание энергетических процессов (как, например, различные ядерные превращения), на которые термодинамический метод исследования но может механически переноситься. В определенных видах космических процессов происходит возрастание разности температур, а не выравнивание их. [c.220]

    Первое начало термодинамики. Энтальпия, Взаимосвязь геплочы, работы и изменения энтальпии и внутренней энергии. [c.28]

    Лекция 10. Первое начало термодинамики. Работа газа при [c.163]

    Лекция 7, Третье начало термодинамики. Вычисление абсолетных энтропий веществ в твердом, жидком и газообразном состояниях. Термо-динашческие потенциалы (Энергия Гиббса и анергия Гелысольца)  [c.209]


Смотреть страницы где упоминается термин Начала термодинамики: [c.136]    [c.10]    [c.12]    [c.19]    [c.30]    [c.31]    [c.195]    [c.188]    [c.164]   
Химия (2001) -- [ c.127 ]

Очерк общей истории химии (1979) -- [ c.411 ]

Понятия и основы термодинамики (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Начала тел



© 2025 chem21.info Реклама на сайте