Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро, использование в качестве следов

    В настоящее время известен ряд модификаций метода исчерпывающего метилирования с использованием иодистого метила в диметилформамиде в присутствии окиси серебра или окиси бария, диметилсульфата и безводного едкого натра в тетрагидрофуране, иодистого метила и металлического калия в жидком аммиаке. В определенных случаях каждый из перечисленных методов метилирования обладает преимуществами перед остальными следует также отметить, что некоторые из них требуют предварительного метилирования по методу Хеуорса, в результате чего получается частично метилированное производное, растворимое в органических растворителях. Для метилирования сахаров может быть использован также диазометан в присутствии трехфтористого бора в качестве катализатора (см. том I 8.35). Уокер мл. (1962) показал, что метилирование иодистым метилом в присутствии окиси серебра в диметилформамиде (Кун, 1955) может быть использовано для исчерпывающего метилирования восстанавливающих сахаров этим методом получают хорошие выходы без предварительной защиты восстанавливающей группы. [c.529]


    Для электропроводящих пленок и клеев в качестве проводящего компонента чаще всего используются порошки мелкодисперсного серебра с частицами чешуйчатой формы. Так, электропроводящий клей может выполняться из следующих компонентов, % (по массе) серебро с частицами чешуйчатой формы — 27, коллоидное осажденное серебро— 46, эпоксидная смола с отвердителем — 24,5, ди-ацетоновый спирт — 2,5. Отверждение электропроводящего клея данного состава производится в течение 1,5 ч при температуре 145°С. В целях снижения температуры отверждения клея, выполняемого на основе эпоксидной смолы с молекулярным серебром, в качестве отвердителя может быть использован диметиламинопропиламин. При этом электропроводящие полимеры выполняются из следующих компонентов, % (по массе) серебро — 69, эпоксидная смола— 26,5 бутилглицидный эфир — 3 диметиламинопропиламин— 1,5. После отверждения при 100°С в течение 4 ч сопротивление 1 см клеевых соединений латунь-латунь составляло 0,005—0,012 Ом, а предел прочности соединения при равномерном отрыве—(255—385) X ХЮ Па. При увеличении Содержания отвердителя с 5 до 10 частей (по массе) контактное сопротивление уменьшается примерно в 4 раза [12]. Значения контактного сопротивления ряда электропроводящих клеев с проводящим компонентом-серебром приведены в табл. 2.10 [12]. [c.91]

    МСУ гораздо менее распространен в практике ионометрических определений, в качестве примеров его использования можно привести следующие определение сульфидов в промышленных растворах бумажной промышленности [101], сульфатов в строительных материалах [102], серебра в фотографических материалах [103]. [c.727]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]


    Были испытаны также другие формы угольных электродов, которые помещались в обычные сосуды из пластика и использовались в различных устройствах [10]. Фактическая абсорбция и расход анализируемого раствора, а также воспроизводимость измерения зависят помимо способа возбуждения и свойств раствора от расстояния между поверхностью раствора и рабочей поверхностью электрода. Кроме того, они зависят от размеров и расположения капиллярных отверстий. Варианты, наиболее пригодные для анализа растворов шлаков, показаны на рис. 3.41. Многие другие устройства подобного типа с капиллярными электродами из графита, меди или серебра и со стеклянными или тефлоновыми сосудами были использованы при возбуждении не только в высоковольтной искре, но и в дуге переменного тока [11 —17]. Наиболее широко распространенные варианты представлены на рис. 3.42 (метод N5 в табл. 9.4.10.7). При использовании дуги постоянного тока (7—8 А, экспозиция 90—100 с) предел обнаружения следов загрязнений в галлии можно уменьшить на порядок величины до 10" % и относительную погрешность довести до 7—11% [18]. В качестве внутреннего стандарта можно использовать наряду с линиями галлия и полосу ОН 3089 А. Электродные чашки были сделаны также из корунда (рис. 3.43), в них поме- [c.158]

    Осуществление метода на практике происходит следующим образом. После декорирования напыляется сплошная угольная пленка. Эту пленку отделяют вместе с прилипшими декорирующими кристалликами и изучают в электронном микроскопе. С помощью этого метода исследуют некоторые щелочные галогениды, а в последнее время также силикаты со слоистыми структурами (слюда, каолинит). При использовании специальной техники эксперимента удалось также осуществить декорирование серебра, меди и полупроводников (кремния и германия). В качестве напыляющего материала для ионных кристаллов особенно пригодными оказались золото (метод декорирования золотом), платина и палладий. Так же могут быть использованы и другие металлы или ионные соединения. [c.350]

    Полярографическое обнаружение Ag+-, u -t--, С<12+-ионов в смеси (метод переменнотоковой полярографии). Одним из преимуществ переменнотоковой полярографии при использовании платинового индикаторного электрода является большая разрешающая способность. Это дает возможность проводить обнаружение одновременно нескольких веществ при их совместном присутствии. Анализ раствора, содержащего Ag+, u +- и С(12+-ионы, можно проводить на аммиачном фоне относительно донной ртути в качестве электрода сравнения. При этом регистрируются пики при следующих значениях потенциалов —0,25 В (серебро), —0,50 В (медь), —0,85 В (кадмий). Следует иметь в виду, что в случае присутствия лишь одного из катионов потенциалы пиков на полярограммах могут иметь несколько другие значения. Поэтому рекомендуется анализ проводить с участием свидетеля . [c.189]

    Окислительно-восстановительное титрование. В табл. 20-2 приведены электрогенерированные окислители и восстановители и примеры их использования в анализе. Особенно успешно в качестве титранта-окислителя применяется электрогенерированный бром с его помощью разработано много интересных аналитических методов. Следует особо обратить внимание на возможность использования титрантов, применение которых в классических титриметрических методах ограничено вследствие их малой устойчивости. В качестве примеров в табл. 20-2 приведены такие титранты, как серебро(И), марганец(П1), хлоридный комплекс меди(1). [c.50]

    При использовании ионообменных сорбентов в качестве растворителя чаще всего применяют воду, водные растворы кислот или комплексообразующих реагентов. Имеются работы по ионообменной хроматографии в неводных растворителях и растворах. Однако эти методы еще недостаточно разработаны. Открывать и определять количественно разделяемые ионы можно методами физико-химического инструментального анализа, радиометрическими методами или обычными химическими методами. Следы катионов металлов легче всего определять или полярографически или радиометрически. Например, следы меди можно определять полярографически, следы серебра и цинка в меди радиометрически. [c.154]

    Наиболее широко распространенная форма фотографического процесса (как для черно-белой, так и для цветной фотографии) основана на использовании галогенида серебра в качестве фоточувствительного материала. Принципы такого процесса будут объяснены в следующем разделе. Однако в качестве введения к последующим нескольким разделам мы рассмотрим несколько нетрадиционных систем, чтобы проиллюстрировать некоторые общие свойства, изложенные в последнем абзаце. Побуждения к использованию систем без галогенидов серебра связаны с нехваткой и высокой стоимостью соединений серебра, беспрерывно увеличивающейся потребностью в сухом процессе и желаемостью прямого и быстрого доступа к записанной информации. Кроме того, фотография на основе галогенидов серебра зависит от образования серебряных частиц, поэтому конечное разрушение ограничивается величиной размера зерен. Некоторые нетрадиционные системы дают изображение, изменяя отдельные молекулы так, что потенциальное разрушение оказывается существенно выше, хотя это достигается обычно за счет значительно сниженной чувствительности к свету. [c.244]


    В качестве следующего примера приведем определение вещества, оказавшегося токсичным для скворцов. Определение группы фосфорорганических пестицидов дало отрицательные результаты при использовании ферментативного метода и тонкослойной хроматографии. Было отмечено, что при хроматографировании хлороформных экстрактов из тканей птиц в тонком слое силикагеля в системе н-гексан — диэтиловый эфир появлялись темные зоны при опрыскивании пластинок азотнокислым серебром. Эти зоны были растянуты по направлению движения растворителей. Используя другую систему растворителей (дихлорэтан — циклогексан), удалось обнаружить пятна, соответствующие полихлоркамфену или полихлорпинену, которые дают характерные пятна в виде галочки . [c.26]

    Недостатки методов определения ацетиленовых соединений заключаются, главным образом, в том, что анализу мешают галогениды, цианиды, сульфиды и в следовых количествах (до 0,01%) альдегиды. Эти примеси потребляют на 1 моль 1 ион серебра галогениды и сульфиды — вследствие образования солей серебра, цианиды — в результате образования комплексного иона, альдегиды восстанавливают ион серебра в металлическое серебро. Следы альдегидов искажают результат определения азотной кислоты, выделяющейся из нитрата серебра, так как образующееся металлическое серебро полностью маскирует переход окраски в конечной точке титрования. В описываемом ниже методе с использованием в качестве реактива меркуриодида калия небольшие количества альдегидов (до 0,5%, считая на формальдегид) допустимы. Однако так как меркуриодид калия окисляет альдегиды, то количества их более 0,5% уже начинают оказывать влияние на результаты определения ацетиленового водорода. [c.391]

    Вследствие этих двух обстоятельств несохранение четности может регистрироваться следующим образом. Рассмотрим пучок мюонов, образующихся при распаде пионов вывод 1 означает, что спины мюонов выстроены вдоль импульса, направление которого выберем за ось z. Если затем пучок мюонов останавливается в поглотителе и измеряется угловое распределение распадных электронов, то в соответствии с выводом 2 числа электронов, регистрируемых под углами 0 и я — 0 по отношению к оси z, будут различны. Именно такой эксперимент и был выполнен Гарвином, Ледерманом и Вайнрихом [14], показавшими нарушение закона сохранения четности в обоих упоминавшихся выше процессах распада. Б этом опыте неявно предполагается, что мюоны не деполяризуются при торможении поглотителем, а также и в ожидании распада после их остановки. Между тем наличие у мюона магнитного момента будет приводить к его взаимодействию с любыми магнитными полями, которые могут ему встретиться в тормозящей среде, и, таким образом, может произойти деполяризация мюонов подобно тому как это происходит с поляризованными ядрами (см. раздел В). Такого рода деполяризация наблюдалась в опытах, в которых регистрируемая асимметрия в -распаде мюонов уменьшалась примерно вдвое нри использовании вместо графита фотоэмульсии (желатина и бромистое серебро) в качестве тормозящего материала. Зависимость деполяризации от химического окружения делает мюоны потенциально полезными для химических исследований. [c.463]

    Многие олефины взаимодействуют с сернистым ангидридом, образуя полимеры, называемые полисульфонами, которые являются исходными для производства формующихся пластмасс с высокими механическими и электрическими свойствами. Реакция протекает при низких температурах и использовании в качестве катализатора света или таких веществ, как бензоил пероксид и нитрат серебра. Предельные температуры (в °С) образования полисульфонов из СНГ следующие изобутан — 4, транс-бутен-2 — 33, цис-бутен-2 — 36, бутен-1—63, пропилен — 87. Однако эти продукты термически неустойчивы и не имеют коммерческого спроса. [c.44]

    С = О > — OOR > N. Кпслотные группы часто приводят к разложению лантаноидных комплексов и поэтому обычно не исследуются (см., однако, табл. IX. 2). Кроме того, в случае насыщенных и ненасыщенных углеводородов сдвигающие реагенты не дают существенного упрощения спектров, так как эти вещества не образуют комплексов. Впрочем, в последнее время для олефинов и ароматических соединений удалось наблюдать индуцированные лантаноидами сдвиги при использовании в качестве вспомогательных реактивов солей серебра. Собственные сигналы протонов сдвигающих реагентов обычно не мешают, так как они сдвигаются в противоположном направлении. Кроме того, следует учитывать, что концентрации сдвигающих реагентов обычно невелики (см. табл. IX. 2). [c.357]

    Вполне специфическими реакциями для обнаружения мышья-ка(П1) в присутствии арсената следует считать все выше описанные реакции арсина, в том числе реакции с хлоридом, бромидом и цианидом ртути(П), нитратом серебра, метолом, диэтилдитиокарбаминатом серебра и трихлоридом мышьяка, если восстановление проводить в щелочной среде (20%-ный раствор NaOH) с использованием в качестве восстановителей порошка металлического алюминия, цинковой пыли или сплава Деварда, а также электрохимического восстановления в щелочной среде, так как в этих условиях до арсина восстанавливается только мышьяк(1И), а мышьяк(У) не восстанавливается. [c.33]

    Последующие усовершенствования касались, в основном, способа приготовления катализатора. Так, в патенте [153] рекомендуется — применять в качестве контакта второй секции состав, приготовленный спеканием двух слоев серебра. Верхний слой (высота 10—100 мм) имеет объем пор 75—90%, пористость нижнего слоя (высота 5—20 мм)—65—75%. Также рекомендуется применять сплав серебра с золотом в соотношении А5 Аи = 50 50 и 40 60 при температуре реакции на обеих секциях не выше 600 °С. Максимальное мольное отношение ОаСН3ОН также не превышает 0,5. В этом варианте достигаются следующие показатели конверсия метанола 98,0—98,6%, мольная селективность 88,1—89,6%. В случае проведения процесса с использованием указанного сплава на одной секции конверсия составляла 89,8%, а мольная селективность 91,8%. [c.58]

    Метил-Нз-ацстат-Нз получали [1, 2] этернфикацией мета-нола-Н4 уксусной-Н,з кислот ой-Н в ирисутствии хлористого сульфурила. Использование в качестве катализатора хлористого сульфурила вместо применяемых обычно соляной и серной кислот исключает возможность изотопного разбавления. Полученный продукт [2] отделяют фракционированной перегонкой и нагреванием с обратным холодильником в ирисутствии окиси серебра с целью удаления следов хлора. После этого он перегоняется в интервале 55,5—56,5°, 1,3605, 1,3578. [c.116]

    Из этого следует, что графит как инертный и хорошо гоконро-водагаий материал не мохет быть использован в качестве основы для серебряных электродов. Эти результаты не противоречат имеющимся в литературе данным /14-1 об электрохимическом осаждении оеребра на графите, так как в указанных работах количество осаждаемого серебра было неизмеримо малым и соответствовало покрытию поверхности не более десятка атомных слоев. [c.70]

    Авторы детально анализируют полученные ими данные в -свете современной теории образования скрытого изображения, согласно которой светочувствительные центры представляют собой ловушки для электронов проводимости, где впоследствии локализуются положительно заряженные ионы. Предполагалось, что структурные несовершенства в кристалле бромистого серебра можно рассматривать как набор ловушек различного качества. Эффективность их использования при экспозиции зависит от природы, интенсивности и продолжительности применяемого излучения. Например, тот известный факт, что короткие экспозиции высокой интенсивности (альфа-частицы, рентгеновские лучи) менее эффективны, чем длительные средней интенсивности (видимый свет), объяснялся следующим образом. Во время экспозиции высокой интенсивности в зерне образуется сравнительно плотное электронное облако и заполняются многие (даже мелкие) ловушки. Поэтому скрытое изображение "будет высокодиснерсным и только немногие центры будут иметь шанс вырасти до критического размера, необходимого для последующего проявления в результате многие из экснониро-вапных зерен останутся пепроявленными. Напротив, вовремя экспозиции излучением средней интенсивности действует меньшее число ловушек и образуются большие но размерам скрытые центры, способные к дальнейшему восстановлению проявителем. [c.173]

    Следует отметить, что даже в области средних температур (300— 700° К) применение адиабатного метода калориметрии дает ряд преимуществ по сравнению с методом смешения [452] при определении термических свойств органических веществ, обладающих метастабильными фазами и необратимыми превращениями в процессе нагревания или не образующих термодинамически равновесных фаз при закалке. Адиабатический калориметр с автоматическим контролем температуры адиабатической оболочки позволяет также изучать такие фазовые превращения, в которых тепловое равновесие, или гистерезис, достигается в течение многих часов. В качестве примера на рис. II.2 изображен адиабатический калориметр, использованный Вестрамом и Троубриджем [1599] для прецизионного определения теплоемкостей конденсированных фаз и энтальпий фазовых переходов и плавления в интервале температур от 300 до 600° К. Принцип работы этой калориметрической установки, предусматривающей изоляцию калориметрического сосуда от внешней среды с помощью хромированных тепловых экранов, аналогичен принципу работы описанного выше калориметра для измерения теплоемкостей при низких температурах. Калориметр, изготовленный из серебра, имеет осевое отверстие для нагревателя сопротивлением 250 ом и помещенный в чехол платиновый термометр сопротивления, плотно вставляющийся с помощью медно-бериллиевой втулки в высверленное отверстие муфты нагревателя. С помощью нарезки на верхней поверхности муфты нагревателя и винтового шлифа муфта плотно ввинчивается в коническое отверстие С. Для выравнивания температуры служат шесть вертикальных радиальных перегородок, смонтированных вместе с погружаемым калориметром. Загрузка вещества в калориметр производится через специальную герметичную [c.37]

    Использование карбонилродий-З-фторацетилкамфо-рата в качестве активного компонента НЖФ имеет по сравнению с использованием для тех же целей солей серебра следующие преимущества 1) более сильное взаимодействие с разделяемыми соединениями, позволяющее получить лучшее отделение предельных углеводородов от непредельных 2) влияние структуры олефина на константу равновесия комплекса более выражено, 3) комплексы родия растворимы в неполярных фазах, на которых хорошо разделяются и предельные соединения. Недостатком этого метода хроматографического [c.173]

    Как видно из таблицы, константа для додекана в 10—50 раз больше, чем для толуола. Согласно уравнению (2), чем больше тем слабее будет экстракция серебра. Поэтому при использовании в качестве растворителя додекана комплекс сульфидов с нитратом серебра практически полностью пере.чодит в водную фазу. Следует отметить, что эти результаты имеют большое практическое значение. В случае- экстракции металлов сульфидами необходимо в качестве разбавителя использовать ароматические углеводороды, а в случае экстрактивного выделения сульфидов из нефтяных дистиллятов, напротив, предпочтительно использовать нормальные парафины. [c.36]

    В XIX в. был разработан метод колориметрического определения железа(П1) с помощью тиоцианата (Герапат, 1852 г.) и описано титриметрическое определение серебра с использованием этого же реагента (Фольгард, 1877 г.). Для титрования борной кислоты рекомендовался глицерин (Томсон, 1893 г.) в различных реакциях применялись следующие органические реагенты морин — во флуоресцентной пробе на алюминий (Гоппельсрёдер, 1867 г.), флуоресцеин — в качестве кислотно-основного индикатора (Крюгер, 1876 г.), анилин — для каталитического обнаружения ванадия (Гвийяр, 1876 г.), 1-нитрозо-2-нафтол — как осадитель кобальта (Ильинский, фон Кнорре, 1885 г.), 2,2 -дипиридил и 1,10-фенан-тролин-—в качестве реагента на железо(П) (Блау, 1888 г.). [c.20]

    Чановое выщелачивание используется в горнорудной промышленности для извлечения урана, золота, серебра и меди из окисных руд. Медные и урановые руды сильно измельчают и смешивают с растворами серной кислоты в больших емкостях (обычно размером 30X50X6 м) для перевода металла в растворимую форму. Время выщелачивания, как правило, составляет несколько часов. Медь получают из кислого раствора электролизом, уран — ионообменным путем или экстракцией растворителем. Ферментация в чанах, а также в отстойниках с постоянным или предварительным перемешиванием может с успехом применяться для бактериального выщелачивания потому, что при этом легко контролировать факторы, влияющие на активность микроорганизмов. К этим факторам относятся размер частиц руды, ее качество, плотность пульпы (масса руды на единицу объема раствора), pH, содержание углекислого газа, кислорода, время удержания (время нахождения частиц в реакторе), температура и содержание питательных веществ. Хотя руда и не стерилизуется, возможен строгий контроль за видовым составом и количеством микроорганизмов. Чановое выщелачивание создает предпосылки для использования специфических штаммов микроорганизмов (например, ацидотермофиль-ных бактерий) или микробов-выщелачивателей, полученных методами генетической инженерии. Вначале чановое выщелачивание применяли для руд с очень высоким содержанием металлов, однако эта технология может использоваться и в случае материалов более низкого качества. При этом следует учитывать экономические и технологические факторы. [c.200]

    Введение [1—9,16]. а-Частицы вызывают в подходящем фосфоре вспышки света, которые в результате размножения вторичных электронов превращаются в импульсы тока и, наконец, могут быть зарегистрированы пересчетным прибором с механическим счетчиком. Например, в качестве фосфора хорошо подходит активированный серебром сульфид цинка, поступающий в продажу (завод светосоставов в Бад Либенштайне) в виде тонкого кристаллического порошка. Этот порошок осаждается из чистой воды на стеклянный носитель и после высушивания плотно пристает к нему. При выборе толщины слоя следует принимать во внимание, что в очень тонких слоях фосфора а-частица не сможет потерять всю свою энергию (амплитуда импульсов становится слишком малой), а в очень толстых слоях часть света люминесценции поглотится в самом фосфоре (амплитуда импульсов становится меньше, чем следовало бы ожидать при поглощении всей энергии а-частицы). При подходящей толщине слоя фосфора легко могут быть проведены исследования а-излучения, такие, как измерение интенсивности, поглощения и определение величины пробега а-частиц. Преимущество измерения а-излучения сцинтилляционным счетчиком состоит в том, что при использовании подходящего фосфора можно регистрировать только а-частицы на фоне Р- и у-излучения. Поглощенная в тонком слое-2п5 —Ag энергия р- и у-излучения недостаточна для того, чтобы вызвать сцинтил-ляционную вспышку, сравнимую по величине со вспышкой от а-частицы. По этой же причине не дают измеримых сцинтилляций в а-фосфорах и космические лучи. Фон, помимо случайно возникающих импульсов теплового шума, практически отсутствует, поэтому можно измерять очень малые а-активности. [c.125]

    Для дальнейшего разделения цыс-пентена-2 и транс-пете-на-2 в качестве сорбента был использован 40%-ный раствор азотнокислого серебра в этиленгликоле, нанесенный на диатомит. Порядок выхода компонентов С5 на этом сорбенте следующий бета-изоамилен, транс-пентен-2, гажжа-изоамилен, алб-фа-изоамилен, пентен-1, цыс-пентен-2. Преимущество такой последовательности состоит в том, что цис- и гранс-изомеры пентена-2 имеют различные объемы удерживания, а на ТЭГНМ они выделяются друг за другом, что затрудняет их очистку. При выборе оптимальных параметров режима препаративного разделения цис- и транс-пентена-2 был установлен определенный объем пробы, скорость газа-носителя, рассчитаны величины, характеризующие эффективность разделения (число теоретических тарелок, ВЭТТ, критерии разделения и селективности, производительность колонки), а также зависимость этих величин от изменения объема пробы. Полученные данные сведены в нижеследующей таблице. [c.31]

    Уже из этих примеров состава колчеданов ясно, что они могут быть и должны быть сырьем не только для производства серной кислоты, но и других ценных для народного хозяйства веществ. Фактически природные колчеданы являются комплексными рудами. Отсюда ясно, что принцип всестороннего использования природных ресурсов выдвигает организацию на основе утилизации колчеданов целого комплекса производств. Комплексное использование колчеданов осуществлено в передовых капиталистических странах. В качестве примера можно указать на промышленный комбинат в Гетштедте (Германия). Применяемый там колчедан кроме серы и железа содержит следующие вещества (в весовых процентах) Си — 3, 2п — 0,6, РЬ — 0,18, Ag — 15 г/т. Из этой руды комбинат получает медь, цинк, свинец и серебро. На получающемся при обжиге газе работают два сернокислотных завода. [c.36]

    Следует отметить, что при использовании в качестве инертных электродов серебра, золота и платины для реакции перезарядки трехоксалатных комплексов железа в 0,5 М К2С2О4 (20 °С) методом фарадеевского импеданса получены много меньшие значения kg, чем со ртутью, которые составляют 1-10 (Ag) 5- 10 (Au) и 9-10 СМ С 1 (Pt) [256]. Большая чувствительность константы скорости kg системы МI Ре(Са04) к природе инертного металла М, вероятно, обусловлена разными условиями адсорбции участвующих в электрохимической стадии комплексов на поверхности электрода. [c.135]

    Серебро предпочтительно взаимодействует с хелатообразующими реагентами, содержащими в качестве донорных атомов азот и серу, и, как правило, образует хелаты с координационным числом два. Наиболее известным хелатообразующим реагентом, отвечающим этим требованиям, является 2-нафтиламид тиогликолевой кислоты (тионалид), с использованием которого разработан хороший гравиметрический метод определения серебра. При условиях осажде1шя серебра труднорастворимые хелаты образуют также следующие элементы Аз, Аи, В1, Си, Нд, Р(1,Р1, 5Ь и 5п. Эти элементы мешают определению серебра. Кроме того, состав хелата серебра не точно соответствует стехиометрическому составу и хелат необходимо прокаливать перед взвешиванием. Однако этот реагент рекомендуют для определения небольшого количества серебра в присутствии большого количества Т1 и РЬ (до отношения 1 200) [199, 200.  [c.197]

    Проницаемость водяных паров у гидратных пленок очень высока в этом отношении пленки могут конкурировать с ацетатцеллюлозными листами лишь при покрытии их лаками из триэфиров целлюлозы, снижающими влагопроницаемость до 5—10% от исходной величины. Это особенно необходимо при использовании гидратных пленок в качестве упаковочного материала для сохранения свежести пищевых продуктов. При упаковке значительную роль играет бесцветность пленки, а также содерлоние в ней агрессивных примесей. Медноаммиачные листы обладают определенным преимуществом перед вискозными, вследствие содержания в последних следов серы, при упаковке, например, серебра. [c.316]


Смотреть страницы где упоминается термин Серебро, использование в качестве следов: [c.396]    [c.461]    [c.396]    [c.76]    [c.353]    [c.81]    [c.167]    [c.201]    [c.380]    [c.79]    [c.128]    [c.259]    [c.19]    [c.186]    [c.215]    [c.125]    [c.52]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

след

след н след



© 2025 chem21.info Реклама на сайте