Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь Покрытия комбинированные

    Композиционные (комбинированные) электрохимические покрытия (КЭП) представляют собой осадки металла, содержащие включения большого числа мелких инертных частиц, так называемой второй фазы. В зависимости от назначения КЭП в качестве второй фазы используют различные вещества и соединения. Комбинированные покрытия позволяют улучшать поверхностные свойства изделий путем совмещения свойств гальванопокрытий со свойствами других материалов. Так, в технике используют износостойкие и твердые композиционные покрытия никель —алмаз никель — карборунд, никель — корунд, само-смазывающиеся покрытия с пониженным коэффициентом трения, никель — сульфид молибдена, медь — графит, термостойкие покрытия никель —карбид кремния или вольфрама, антикоррозионные покрытия и др. [c.271]


    В практике широко развито никелирование железа с промежуточным подслоем меди. Иногда применяют комбинированное покрытие никель—медь из меднокислой ванны — никель. Лишь в некоторых случаях необходимо покрывать железо никелем без подслоев меди (например, таким способом никелируют хирургический инструмент, клише и стереотипы для полиграфического производства с целью получения повышенной поверхностной твердости). Для защиты никелевых покрытий от механических повреждений и сохранения декоративного вида на более длительный срок поверх никеля электролитически осаждают тонкий слой (1—1,5 мк) хрома. Для защиты от коррозии в атмосферных условиях суммарная толщина комбинированного покрытия при никелировании должна составлять 25—-30 мк, а для изделий, работающих в жестких условиях, 45 мк. Толщина наружного слоя никеля должна быть не менее 12—15 мк. [c.172]

    В противоположность блестящим осадкам молочные оСадки хрома, получаемые главным образом при высокой температуре (60—70 °С) и сравнительно небольшой плотности тока ( к = = 20—30 A/дм ), не имеют трещин и значительно менее пористы. Такие осадку при достаточной толщине ( 20 мкм) могут быть использованы для защиты стальных изделий от коррозионного разрушения в атмосферных условиях при повышенных влажности и температуре. Для этой цели В. И. Лайнером и О. А. Петровой был предложен процесс комбинированного двухслойного покрытия сначала молочным, а затем блестящим хромом (тонкий слой) взамен многослойного покрытия медь — никель — хром. [c.420]

    Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде. [c.109]


    К комбинированным однофазным твердым покрытиям относят системы, состоящие из однокомпонентных многослойных покрытий (например, никель матовый — никель блестящий, медь из цианистой ванны — медь из кислой ванны, многослойный хром, полученный из электролита при различных режимах), и многокомпонентные системы, состоящие из одного или нескольких слоев, включающих один или несколько твердых компонентов. [c.682]

    Возможно хромирование по предварительно нанесенной на поверхность черных металлов хроматной пленке. При этом адгезия не ниже, чем у изделий с комбинированными металлическими покрытиями медь — хром, никель — хром. [c.693]

    Ввиду этого потенциал хромового покрытия во всех известных случаях электроположительнее железа, и потому для железа и его сплавов хромовое покрытие является лишь механическим защитником. Хромовые покрытия крайне пористы даже в толстых слоях, и потому хромирование для защиты от коррозии осуществляется лишь после нанесения на поверхность изделия промежуточных покрытий другими металла.ми, например медью, никелем. В этом случае хром лишь предохраняет нижележащие слои от механических повреждений и сохраняет декоративный вид изделия. Процесс комбинированного защитно-декоративного покрытия, когда наружным слоем является хром, называется декоративным хромирование м . Декоративное хромирование получило широкое применение для покрытия наружных частей деталей машин, приборов, а также предметов домашнего обихода. Толщина слоя хрома при декоративном покрытии не превышает 1 (л. [c.281]

    При защитно-декоративном хромировании используется высокая коррозионная стойкость хрома в атмосферных условиях, даже самых тяжелых. Однако так как защитная способность блестящих хромовых покрытий невелика, защитно-декоративное хромирование выполняют с применением надежных защитных подслоев меди и никеля, а тонкий слой хрома (около 1 мкм) наносят на подслой для защиты его от окисления. Такое комбинированное покрытие сохраняет блестящую поверхность в течение длительного времени. Применительно к разным видам изделий толщины покрытий приводятся в нормативно-технической документации. [c.73]

    Были сделаны также попытки создать комбинированную защиту поверхности рифленых цилиндров посредством применения хромирования с подслоями меди и никеля. Однако нанесение толстых слоев хрома, порядка 20 мк, на подслой меди и никеля вызывало шелушение покрытия. [c.98]

    В ряде случаев используются комбинированные покрытия, например медь в качестве подслоя, после чего производится химическое никелирование таких деталей. [c.158]

    Непрерывность химически восстановленной пленки серебра на деталях при погружении их в обычные кислые растворы медных солей нарушается, что приводит к неудовлетворительному последующему электролитическому отложению металла на них. Удовлетворительные электролитические медные покрытия получаются только в том случае, если сразу по погружении деталей в раствор начать процесс электролитического отложения металла. Если электролитическое отложение меди начинается не сразу, серебряная пленка сходит с некоторых участков поверхности и они остаются непокрытыми. Растворы медных электролитов с низким содержанием серной кислоты, хотя и не разрушают быстро серебряную пленку, не дают удовлетворительных покрытий. Лучшие покрытия получаются при комбинированных электролитах. Первоначально детали покрывают полностью слоем меди незначительной толщины в ванне с содержанием 1,5% вес. ч. сернокислой меди, 1% щавелево-кислого [c.166]

    Вместо многослойного покрытия медь — никель — хром применяют также осаждение молочных осадков хрома, обладающих малой пористостью, непосредственно на сталь. Состав электролита может быть тот же, что и для защитно-декоративного хромирования, но процесс ведут при 70° С и катодной плотности тока 25— 35 А/дм . Применяется также комбинированное двухслойное покрытие хромом — молочным и блестящим. Такое покрытие целесообразно применять для изделий, работающих в условиях высокой влажности. Хромирование производится последовательно в двух ваннах с указанными составами электролита. Первым осаждается молочный хром при 70° С и катодной плотности тока 30 А/дм , затем деталь переносится (без промывки) во вторую ванну, где осаждается блестящий хром при 50° С и плотности тока 30— 50 А/дм2. [c.317]

    Рассматриваемые в настоящем разделе вопросы вытеснения воды с поверхности металла связаны с практическими задачами защиты от коррозии металлоизделий, полное удаление воды с поверхности которых перед консервацией невозможно по каким-либо причинам. Так обстоит дело при необходимости зашлты от коррозии в полевых условиях сельскохозяйственной и общей техники, при консервации в условиях высокой влажности, в морских условиях и т. д. Защита металла от коррозии в этих условиях плотными неингибированными смазками (пушечной, техническим вазелином, ПП-95/5 и Др.), также обычными лакокрасочными покрытиями и полимерными пленками часто бывает неэффективной коррозия развивается под слоем таких покрытий. Комбинированные маслорастворимые ингибиторы коррозии, современные КСМ и РКСМ можно применять для консервации мокрых поверхностей. Для подтверждения данного положения проводили следующий эксперимент. Подготовленные обычным образом пластины и детали из чугуна, Ст. 3, Ст. 45, ШХ-15, алюминия, дюралюминия, меди, свинцовистой бронзы, латуни и магниевых сплавов погружали в 3%-ный водный раствор Na l (на 5 мин) или другие электролиты. Затем на пластинки наносили слой пластичных смазок или несколько раз окунали в исследуемое ингибированное масло. После часовой выдержки на воздухе пластинки помещали в термовлаго-камеру Г-4 на 24 ч. Результаты некоторых исследований на Ст. 45 для различных товарных продуктов приведены в табл. 36. [c.161]


    В книге излагаются теоретические основы процессов получения комбинированных (композиционных) электрохимических покрытий, которые состоят из металла и оксидов, боридов и других включений.. Приведены формулы для расчета состава суспензий, типовые рецептуры и описаны свойства комбинированных покрытий на основе цинка, кадмия, олова, свинца, хрома, кобальта, железа, никеля, меди, серебра и золота. [c.2]

    Наполнители используют в композициях для покрытий, в связующих для слоистых пластиков, в литьевых смолах и конструкционных материалах. Например, графит и дисульфид молибдена придают полиамиду и политетрафторэтилену улучшенные антифрикционные свойства и меньшую истираемость. Добавка металлических порошков на основе бронзы, меди, нержавеющей стали повышает теплопроводность полимерных материалов. При добавлении наполнителей существенно снижается коэффициент термического расширения, который у полимеров значительно выше, чем у металлических конструкционных материалов. Это свойство одновременно увеличивает возможности комбинирования металлических и высокополимерных материалов в конструкционных деталях, подвергающихся воздействию высоких температур. С другой стороны, при добавке наполнителя (чаще всего до 30%) можно уменьшить усадку полимерных материалов, возникающую при переработке их в изделия. Для литьевых смол, применяемых в электротехнике, особенно важна малая усадка для получения деталей с малыми внутренними напряжениями. [c.83]

    Прочность сцепления определялась качественно — многократным изгибом образцов на 90 и 150°. При таком многократном изгибе, вплоть до излома образца, медные покрытия не отслаивались, прочно удерживаясь на основном металле. Достаточная прочность сцепления медного покрытия достигалась и в том случае, когда наращивался слой меди 15—25 . Такой результат мог быть получен только при условии устранения или резкого уменьшения пористости начального слоя меди, что достигалось только при режиме комбинированной обработки. [c.426]

    Непосредственное никелирование чугуна представляет затруднение только в том случае, если отливка содержит графит в виде крупных листоподобных включений или не полностью освобождена от выделений графита. В этих местах слой иике-ля или не растет, или растет с трудом. В качестве вспомогательного средства можно применить подслой из меди, полученной в цианистой ванне. Медь равномерно покрывает также и графит, поэтому поледующее никелирование происходит беспрепятственно, однако ие следует забывать, что в этих местах нет прочного сцепления покрытия с основным металлом и что качество антикоррозионной защиты покрытия местами сильно снижено. При хорощей поверхности литья комбинированный слой медь — никель равнозначен слою чистого никеля такого рода слои применяют, например, при никелировании плит для утюгов. [c.364]

    Минимальная толщина покрытия в отдельных местах детали должна составлять по крайней мере 50% средней толщины. При нанесении комбинированного покрытия из меди и серебра толщина медного слоя может составлять приблизительно /3 общей толщины покрытия на алюминии. [c.317]

    Защитить железо от коррозии никелированием можно лишь при наличии сравнительно толстых покрытий, поэтохму в практике широко развито никелирование железа с промежуточным подслоем меди. Иногда применяется комбинированное покрытие первый слой — никель, промежуточный слой — медь из меднокислой ванны и последний слой — никель. Лишь в некоторых случаях необходимо покрывать железо никелем без подслоев меди (например, таким способом никелируют хирургический инструмент, ибо продукты коррозии меди ядовиты также поступают с клише и стереотипами для полиграфического производства с целью получения повышенной поверхностной твердости). Как правило, для защиты никелевых покрытий от механических повреждений и сохранения декоративного вида покрытия на более длительный срок, поверх никеля электролитичеоки осаждают тонкий слой хрома. Для защиты от коррозии в атмосферных условиях суммарная толщина комбинированного покрытия при никелировании составляет 25—30 ц, а для изделий, работающих в жестких условиях, — 45р.. Толщина наружного слоя никеля не должна быть менее 12—15 [c.275]

    В зависимости от строения комбинированные однофазные покрытия могут быть полиметаллическими (никель — хром, медь — никель — хром), металлоконверсионными (кадмий — хромат, никель — оксид), металлополимерными (цинк — лакокрасочные покрытия), граничащими (хром — олово), смешанными (медь под граничащим слоем хром — олово) и композиционными (металл с внедренными частицами полимера, металл с внедренными частицами окислов металла, полимер с частицами металла, лакокрасочные покрытия с частицами металла). [c.682]

    Для крепления обкладки к металлу или бетону используется клей, состоящий из этой же резины Д-10 Н и хлорнаирита, растворенных в смеси этилацетата с бензином, в который иногда добавляют хлорную медь для ускорения структурирования наирита. Адгезия, вполне удовлетворительная при открытой вулканизации (80—100°С) воздухом, водой или паром, возрастает более чем вдвое при закрытой вулканизации под давлением острым паром. К такому способу прибегают при гуммировании аппаратов, работающих под вакуумом. Благодаря способности вулканизоваться без давления при температурах, даже лежащих ниже 100 °С, резина Д-10 Н получила на ряде химических заводов широкое применение для гуммирования крупногабаритных емкостей. Они используются также и в комбинированных покрытиях металлических и бетонных емкостей, где сырая резина укладывается в виде подслоя под футеровку плиткой или другим штучным товаром. В этом случае резина вулканизуется в процессе эксплуатации аппарата, даже если рабочая среда в нем нагрета лишь до 60 °С. [c.38]

    Для получения покрытий белой бронзой рекомендован электролит, содержащий (г/л) 8—12 меди (в пересчете на металл), 40— 45 олова (в пересчете на металл), 10—15 K N, 10—20 NaOH г к= 1,54-3 А/дм , а= 1,5 4-2 А/дм , t = 604-65 °С. Аноды — нерастворимые никелевые или комбинированные медные и никелевые с периодическим корректированием электролита по расходуемым металлам. [c.92]

    Влияние легирующих элементов на пластичность храма ири обработке давлением описывалось в ряде работ [94], [95]. В этих работах отмечается, что при добавке 1 % вольфрама шлав на хромовой основе проковывался при 900° в оболочке из мяпкой стал и. Сплавы с 5% вольфрама и 1% титана растрескивались при ковке в. этих же условиях. Были провецены также эксперименты по прокатке хрома, которыми была показана воаможность прокатки его в интерв але температур 450—900° в. комбинированной оболочке, состоящей из слоя мялкой стали и слоя нержавеющей стали. Такое комбинированное покрытие после обработки удаляется нержавеющая сталь механическим путем, а мягкая сталь растворением в кислоте. Структура получавшейся. катаной ленты была мелкозернистой с вытянутыми по направлению прокатки зернами. При эт01М количество ориентированных в направлении прокатки зерен увеличивалось с понижением температуры прокатки. Описанная методика прокатки хрома дала положительные результаты при прокатке сплава с 1% вольфрама при температуре 900°. Отжиг катаной ленты при температуре 900—950° приводил к рекристаллизации и выравниванию структуры. Твердость ленты, прокатанной при 900 и отожженной при 900°, после прокатки соответственно была равна 210 и 180 по Виккерсу (нагрузка 1 кг). Для повышения пластичности хрома при прокатке перед оберткой заготовки в оболочку поверхность ее подвергается электролитическому покрытию железом или медью толщиной примерно 0,75 мм. С этой целью обертку производят в атмосфере аргона. [c.303]

    При получении покрытий большое значение имеет предварительная подготовка порошков, в частности плакирование их металлом или совместное оплавление. Широко распространено капсулирование частиц ДФ никелем (3—12%), кобальтом (5— 20%), медью или сплавом Ni—Р (1—18%). В скобках указана массовая доля покрытий. При комбинировании нескольких видов тугоплавких оксидов образуются эвтектики различного состава, например MgO—2гОг, MgO—СггОз, 2гОг—СггОз, соответственно при температурах 2070, 2290, 1880 °С и др. [8]. [c.219]

    Бензтриазол и его производные Достаточно эффективно защищают цветные и плохо — черные металлы. Некоторые производные вы-сокознффективны Ингибитор коррозии меди и медных сплавов для водных сред Входит в композиции комбинированных ингибиторов коррозии для масел, в состав антифризов, пластичных смазок я пленочных покрытий как противокоррозионная присадка для защиты меди, бронзы и других цветных металлов [c.134]

    Плотные, прочно сцепленные с железной поверхностью осадки меди получались только при применении комбинированного метода нанесения начального слоя покрытия [4]. Поверхность железа вначале пассивировалась в концентрированной азотной кислоте, затем образец под током помещался в кислый электролит для меднения, содержавший Си304- бНаО — 200 г/л, Н2304 — 50 г/л и клея — 5—6 г/л. При этом плот-.ность тока составляла 12—15 а/дм электролиз длился 15—30 сек. [c.426]

    Влияние медного п о д с л о я. В какой мере медь может замещать никель в декоративных покрытиях — пока еще окончательно не выяснено. Известно, что даже относительно толстое хромовое покрытие, нанесенное непосредственно на медь без промежуточного слоя никеля, имеет сравнительно небольшую стойкость против атмосферной коррозии. Также определенно установлено [2], что комбинированные. медноникелевые покрытия на стали или цинковых сплавах обладают худшими защитными свойствами, чем никелевые покрытия такой же толщины. Но влияние многослойности зависит от общей толщины покрытия и от характера атмосферы. [c.887]

    Для защиты сплавов алюминия от атмосферной коррозии применяют комбинированные металлические и неметаллические покрытия. После испытаний в течение 20 мес. в промышленной атмосфере алюминиевого сплава 35 с покрытием медь—никель—хром, нанесенном после анодирования в фосфорной кислоте, коррозионные поражения появлялись в виде точек, вздутий и пятен. Вздутия образовались па 15 образцах из 24. Пятна имели светло-серую или коричневую окраску, свидетельствующую о коррозии меди. С увеличением толщины подслоя никеля интенсивность точечных поражений уменьшилась. При толщине никелевого подслоя 13 мк, несмотря на сквозную коррозию покрытия, алюминий не подвергся разрушению. Покрытия, полученные щинкатным способом и методом Фогта по предварительно анодированной поверхности, показали хорошук> стойкость при обрызгивании соленой водой [214]. [c.107]


Смотреть страницы где упоминается термин Медь Покрытия комбинированные: [c.106]    [c.198]    [c.36]    [c.428]    [c.106]    [c.455]    [c.679]    [c.321]    [c.198]    [c.195]    [c.111]    [c.160]   
Справочник по гальванопокрытиям в машиностроении (1979) -- [ c.134 , c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Покрытия комбинированные



© 2024 chem21.info Реклама на сайте