Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число электронов

    Группы и подгруппы. В соответствии с максимальным числом электронов на внешнем слое невозбужденных атомов элементы периодической системы подразделяются на восемь групп. По-/ожение в группах 5- и /7-злементов определяется общим числом электронов внешнего слоя. Например, фосфор (Зз Зр ), имеющий на внеш-кем слое пять электронов, относится к V группе, аргон — [c.30]


    Порядок заполнения орбиталей данного подслоя подчиняется пр а в и л X н д а суммарное спиновое число электронов данного подслоя должно быть максимальным. [c.23]

    Число и природа носителей т(жа в полупроводниках в большей степени зависят от их чистоты и характера примесей. Примеси принято делить на донорные и акцепторные, т, е. на отдающие и присоединяющие электроны. Донорные примеси увеличивают число электронов, а акцепторные — число дырок. Этот эффект примесей можно пояснить на примере германия, у которого имеется четыре валентных электрона. Если атом германия в его решетке заменить пятивалентным атомом мышьяка, то один электрон окажется лишним. Для его участия в проводимости необходимо, чтобы энергетический уровень атома примеси был расположен в запрещенной зоне вблизи зоны проводимости (непосредственно у ее нижнего края). Тогда каждый атом примеси будет ионизирован и электроны перейдут в зону проводимости. Число отрицательных носителей тока в полупроводнике с донорной примесью больше, чем число положительных носителей тем ие менее уравнение (5.45) остается справедливым, подобно тому как ионное произведение воды не изменяется при добавлении щелочи. Предположим, что один атом донорной примеси приходится ьа 10 атомов полупроводника. Считая все атомы примеси (иaпp iмep, мышьяка) полностью ионизированными, найдем, что в 1 см германия находится 4,5-10 при- [c.138]

    В подгруппах же элементов с возрастанием порядкового номера элемента (увеличение числа электронных слоев) раз.меры атомов в общем увеличиваются, а энергия ионизации уменьшается. Характер изменения сродства к электрону (см. рис. 14) в периодах и подгруппах [c.264]

    В нормальном состоянии атом электрически нейтрален. Это означает, что каждому протону в ядре соответствует электрон, расположенный на периферии атома. Следовательно, число электронов в нейтральном атоме равно порядковому номеру. Так, в атоме водорода всего 1 электрон, в атоме натрия их И, в атоме урана 92 и т. д.  [c.157]

    В более тяжелых атомах, в которых число электронов все растет и растет, увеличивается чпсло электронов на внутренних оболочках, но на внешней оболочке число электронов остается постоянным. Так, например, порядковые номера редкоземельных элементов лежат в пределах от 57 до 71 включительно. И хотя по мере продвижения по периодической таблице мы наблюдаем увеличение числа электронов на внешней оболочке, все редкоземельные элементы имеют по три электрона на внешней оболочке. Это тождество внешних оболочек объясняет, почему элементы этой группы так неожиданно оказались похожи друг на друга по свойствам. [c.158]


    Изотопы, занимающие одно и то же место таблицы, должны иметь один и тот же порядковый номер и, следовательно, одно и то же число протонов в ядре и одно и то же число электронов на оболочках. Изотопы элемента должны обладать одинаковыми химическими свойствами, так как эти свойства зависят от числа и расположения в атомах электронов. [c.166]

    У каждого атома щелочных металлов электроны распределяются таким образом, что внешнюю оболочку занимает только один электрон. Поскольку при столкновении атомов в контакт вступают именно внешние электронные оболочки, то следует ожидать, что число электронов на внешней оболочке и определяет химическую активность элемента. Элементы с аналогичными внешними электронными оболочками имеют сходные свойства, как, например, вышеупомянутые щелочные металлы. [c.158]

    Орбитали энергетической зоны заполняются двумя электронами, как и орбитали атома и молекулы, в порядке их расположения по энергиям и в соответствии с принципом Паули. Следовательно, максимально возможное число электронов в зонах, возникающих за 1 чет перекрывания s-, р-, d-, /-... атомных орбиталей, соответственно равно 2N (s-зона), 6N (р-зона), 10 N (/ -зона), 14 N (/-зона)... Зона, которую занимают электроны, осуществляющие связь, называется валентной (на рис. 75 степень заполнения валентной зоны показана штриховкой). Свободная зона, расположенная энергетически выше валентной, называется зоной проводимости. [c.116]

    Число электронов, переходящих в зону проводимости, а следовательно, и число дырок увеличивается с повышением температуры или освещенности. В этом существенное отличие полупроводников от металлов их электрическая проводимость существенно возрастает с повышением температуры, тогда как у металлов, наоборот, электрическая проводимость с повышением температуры падает. [c.118]

    Величины стандартных потенциалов различных пар, имеющих значение в количественном анализе, приведены в табл. 20. В первой й третьей графах этой таблицы даны формулы отдельных компонентов различных пар, эти компоненты расположены в порядке уменьшения соответствующих им стандартных потенциалов (четвертая графа). Во второй графе указано число электронов (м), получаемых окислителем (первая графа) при превращении его соответствующий восстановитель (третья графа). [c.347]

    Невозможность объяснить все кинетические особенности электрохимического выделения металлов с какой-либо одной общей точки зрения заставляет искать новые пути истолкования этих процессов и прибегать к предположениям частного характера. Так, например, существует мнение, что перенапряжение при выделении металлов связано с числом электронов, участвующих в элементарном акте разряда (Гейровский). При этом предполагают, что одноэлектронные реакции протекают практически без торможения. В тех случаях, когда только один электрон участвует в акте разряда (или когда процесс можно разбить на ряд последовательных одноэлектронных стадий), перенапряжение должно быть низким. Если в разряде ионов металла участвуют одновременно два электрона, то следует ожидать появления высокого металлического перенапряжения. Согласно этим представлениям низкое перенапряжение, наблюдаемое при выделении таллия и серебра, связано с тем, что реакция восстановления требует участия одного электрона  [c.472]

    В тех случаях, когда в реакции число элементов, изменяющих свою (тепень окисления, больше двух, устанавливают общее число электро-1юв, теряемых восстановителями, и общее число электронов, приобретаемых окислителями, а в остальном поступают обычным образом. ] апример  [c.216]

    Максимальное число электронов с данным значением 1 (емкость квантового подслоя) 2 2 6 2 6 10  [c.20]

    Максимальное число электронов с данным значением п (емкость квантового слоя 2п ) 2 8 18  [c.20]

    При наличии в полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дырочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве примеси имеются атомы мышьяка (45 4рЗ). При образовании связей с окружающими атомами кремния атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора 2 2р ) приводит к валентной ненасыщенности атомов 51, т. е. усиливает у полупроводника дырочную проводимость. [c.118]

    Для систем с двумя и большим числом электронов приходится при- ,9. распределение электронной [c.41]

    Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит, в кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла. [c.89]


    В ряду СЮ — СЮг — СЮз — СЮ4 по мере увеличения степени окисления хлора устойчивость анионов возрастает. Это можно объяснить тем, что при переходе от СЮ к СЮ увеличивается число электронов, принимающих участие в образовании связей. Особо устойчив ион СЮ4, в котором все валентные электроны атома хлора принимают участие в образовании связей  [c.295]

    В В реакциях свободных радикалов или атомов, которые образуют молекулы, нельзя пренебречь электронными функциями распределения, поскольку атомы или радикалы вообще имеют нечетное число электронов и вследствие втого множество электронных состояний, чего не наблюдается в случае молекул. [c.251]

    Немецкий химик Рихард Абегг (1869—1910) в 1904 г. указал, что электронная структура инертных газов должна быть особенно устойчивой. Атомы инертных газов не проявляют тенденции к уменьшению или увеличению числа электронов на внешних электронных оболочках и поэтому не участвуют в химических реакциях. [c.158]

    Отдельные, или частные, электродные реакции соответствуют химическим (электрохимическим) превращениям, сумма которых дает общую электродную реакцию. Сумма электродных реакций для двух электродов данной электрохимпческой систем]) даст о.б-щую реакцию электрохи.мической -системы. В ее уравнение не входят электро-ны, поскольку в каждой из двух электродных реакций участвует одно и то же число электронов, но на одном электроде они принимаются частицами (/г, = ), а на другом — отдаются ( , = = —п). Если катодное выделение серебра из цианистого комплекса [c.295]

    Периоды и семейства элементов. Как мы видели, период представляет собой последовательный ряд элементов, в атомах которых происходит заполнение одинакового числа электронных слоев. При атом номер периода совпадает со значением главного квантового числа п внешнего энергетического уровня. Различие в последовательности (аполнения электронных слоев (внешних и более близких к ядру) объясняет причину различной длины периодов. [c.28]

    Уменьшение энергии ионизации в подгруппах 5- и р-элементов объясняется усиливающимся (по мере увеличения числа электронных слоев) экранированием заряда ядра электронами, предшествующими внешиим электронам. [c.35]

    Таким образом, в отличие от ковалентных и ионных соединений в металлах небольшое число электронов одновременно связывает больиюе число атомных ядер, а сами электроны могут перемещаться в метялле. Иначе говоря, в металлах имеет место сильно нелокали-зованная химическая связь. Согласно одной из теорий металл можно ра сматривать как плотно упакованную структуру из катионов, связанных друг с другом коллективизированными электронами (электронным газом). [c.89]

    Соединения азота (I), азота (И) и азота (IV). Для азота, как и дл ч хлора, характерны достаточ но устойчивые оксиды с нечетным числом электронов N0 и ЫОг- Их можю рассматривать как устойчивые вободные радикалы. Оба оксида — эндотермические соединения--их стандартные энтальпии ДЯ и энергии Гиббса образования АС/ имеют положительное знач ние. [c.359]

Рис. 2. Зависимость числа электронов дисперсии в молекуле от числа оди-молекулс. Рис. 2. <a href="/info/39461">Зависимость числа</a> <a href="/info/937703">электронов дисперсии</a> в молекуле от числа оди-молекулс.
    Поскольку связь М—со слагается из <т- и л-связей, для образования кластерных карбонилов требуется большее число валентных электронов -элемента, чем для образования кластерных галидов, у которых связь М—Hal преимущественно одинарная. Таким образом, если кластерные галиды характерны для -элементов V, VI и VII групп, то кластерные карбонилы чаще всего образуют -элементы VII (Мп, Тс, Re) и в особенности VIII группы (Fe, Ru и Os Со, Rh и Ir). Иными словами, кластерные карбонилы характерны для элементов, у которых число валентных электронов превышает число электронов, необходимых для осуществления дативных п-связей МСО. [c.572]

    Клк видно из табл. 57, электронная конфигурация атомов лантаноиде в может быть выражена общей формулой 4/ 5з 5р 5й 6з У ни с достраивается третий снаружи слой (4/-подслой) при одина-кoвo числе электронов наружного (6з ) и у большинства лантаноидов преднаружного 5в 5р ) слоя. Согласно химическим и спектро-скоп11ческим данным при большой энергетической близости 4/- и 5с -со( тояний для лантаноидов 4/-состояние оказывается все же энер гетически более выгодным. Поэтому в их атомах (кроме Ос1) 5(1-элект-рон в отличие от Еа переходит в 4/-состояние. [c.639]

    Относительное постоянства числа электронов дисперсии н 1 г вещества, иллюстрируемое данными табл. 17, и довольно систо.матическое уменьшение частоты с увеличением плотности показывают, что возможно пост-рсить для предельных углеводородов общее уравнение, связывающее коэффициент преломления с плотностью и молекулярным весом. Липкин и Мартин [49] вывели такое уравнение, которое дает зависимость коэффициента преломления от плотности и ее температурного коэффициента. Телшоратурный коэффициент плотности является функцией молекулярного веса, однако до настоящего времени не найдено способа для непосредственной подстановки молекулярного веса вместо температурного коэффициента плотности II уравнение Липкина и Мартина. Это уравнение имеет вид  [c.252]

    По-вядимому, число электронов дисперсии непосредственно связано с числом одиночных связей. Эта точка зрения подтверждается диаграммой рис. 2, построенной по расчетам Куртца и Уорда [44], использовавших данные Эрфле, Вероятно, величина / близка к нулю для электронов в двойных связях или находится вне пределов, в которых она оказала бы уловимое влияние на дисперсию в видимой части спектра. [c.253]

    Для гексана и декана частоты о равны 2,939 X Ю и 2,926 х 10 соответственно, числа электронов дисперсии на связь 1,05 и 1,06 соответственно XI количество электронов дисперсии на 1 г вещества 14,0 X Ю . Для циклогексана и 1-метил-4-изопропилциклогексана значения Гд равны 2,914 X 10 я 2,881 х количество электронов дисперсии на связь равно 1,03, а количество электронов дисперсии па 1 г 13,4 х 10- . [c.254]

    В предельных углеводородах с уменьшением отношеьшя Н С уменьшается также число электронов дисперсии на 1 г вещества. Поэтому неудивительно, что при данной плотности рефракция нафтенов меньше, чем рефракция парафинов. [c.254]

    Вычисмние удельной, дисперсии по молекулярному весу, плотности и одному из коэффициентов преломления. В предельных углеводородах число электронов дисперсии, приходящееся на 1 г вещества, почти постоянно, а характеристическая частота представляет собой простую функцию плотности. С этими фактами связано постоянство удельной дисперсии предельных углеводородов. Это также мон ет служить основой вывода уравнения Липкина и Мартина, предназначенного для вычисления коэффициента преломления предельных углеводородов по их плотности и молекулярному весу 149]. [c.264]

    ЛИШЬ уменьшает общее число фотонов. По мере увеличения энергии падающих фотонов существенную роль начинает играть эффект Комптона. Фотон сталкивается с атомным электроном и претерпевает упругое рассеяние, при этом энергия падающего кванта распределяется между электроном отдачи и фотоном рассеяния. Возникающий электрон отдачи в свою очередь вызывает ионизацию вещества. В случае эффекта Комптона общее число фотонов остается неизменным, хотя энергия их уменьшается (увеличивается длина волны X) и, кроме того, изменяется направление их движения. Эти рассеянные фотоны также могут вызывать чонизацию вещества. Вероятность комп-тоновского взаимодействия зависит от числа электронов, приходящихся на единицу площади поперечного сечения вещества. [c.260]


Смотреть страницы где упоминается термин Число электронов: [c.351]    [c.358]    [c.216]    [c.296]    [c.314]    [c.315]    [c.316]    [c.346]    [c.25]    [c.38]    [c.215]    [c.266]    [c.251]    [c.251]    [c.253]    [c.345]   
Основы полярографии (1965) -- [ c.0 ]

Органическая химия (1964) -- [ c.616 ]

Органическая химия (1964) -- [ c.616 ]




ПОИСК







© 2022 chem21.info Реклама на сайте