Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы ионизация веществ

    Факторы, влияющие на степень электролитической диссоциации. Степень ионизации вещества в растворе зависит от ряда факторов. Рассмотрим важнейшие из них. [c.193]

    Электролитическая ионизация. Степень ионизации. Константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества . Эта формулировка представляет собой обобщенный закон разбавленных растворов Рауля — Вант-Гоффа. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от состава раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо 1,86" ). Это свидетельствует о том, что число частиц в водных растворах кислот, оснований и солей не соответствует молярной концентрации раствора. [c.255]


    Каталитические реакции очень разнообразны. Во многих реакциях каталитическое влияние проявляется в скрытой форме. Сюда прежде всего относятся реакции в растворах. Как мы видели, поляризация, диссоциация и ионизация веществ в растворах — виды активации веществ — происходят под действием растворителя, который, очевидно, играет в этом случае роль катализатора. Большое влияние на скорость и направление процессов оказывают ионы ОН3 и ОН.  [c.206]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа ионизированных молекул к общему числу растворенных. Степень ионизации в основном определяется электроно-донорными и электроно-акцеп-торными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи НаО- -H l в донорно-акцепторную [НгО—Н] +  [c.161]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отнощение числа молей ионизированного вещества к общему числу молей растворенного. [c.144]

    На рис. 145 схематически сопоставлены изменения осмотического давления с концентрацией для растворов низкомолекулярного вещества (кривая 2), слабого электролита (кривая 3) и высокомолекулярного соединения (кривая /). Как видно из рисунка, осмотическое давление раствора низкомолекулярного вещества возрастает прямо пропорционально концентрации. Для слабого электролита осмотическое давление раствора обусловлено не только числом молекул, но и ионов, а так как степень ионизации уменьшается с повышением концентрации, осмотическое давление возрастает более медленно, чем концентрация. Об этом свидетельствует выпуклость кривой, которая обращена в сторону ординаты. Наконец, осмотическое давление раствора высокомолекулярного вещества возрастает быстрее, чем увеличивается концентрация. Это происходит из-за того, что макромолекула благодаря большим размерам и гибкости ведет себя в растворе как несколько более коротких молекул. Поэтому роль кинетического элемента играет уже не пся макромолекула, а соответствующие ее фрагменты. Чем более гибка молекула, тем при прочих равных условиях осмотическое давление выше и тем больше оно отклоняется от значения, вычисленного по уравнению Вант-Гоффа. На основании таких представлений для описания зависимости осмотического давления от концентрации полимеров было предложено уравнение [c.360]


    ИОНИЗАЦИЯ ВЕЩЕСТВ В РАСТВОРЕ [c.138]

    Константа ионизации веществ в растворе. Распад вещества в растворе ни ионы — процесс обратимый. Поэтому его можно охарактеризовать с помощью константы равновесия. [c.138]

    В этом случае константа равновесия характеризует ионизацию вещества в растворе, поэтому ее называют константой ионизации. Очевидно, чем больше константа ионизации, тем более ионизировано соединение. Поскольку константа равновесия от концентрации не зависит, константа ионизации дает более общую характеристику силы электролита, чем степень ионизации. [c.138]

    Ионизация и диссоциация веществ в растворе. В растворах, как и в индивидуальных жидкостях, взаимодействие молекул может сопровождаться их ионизацией. Распад вещества на сольватированные ионы Под действием молекул растворителя называется ионизацией веществ в растворах или электролитической диссоциацией. [c.160]

    Еще одним чрезвычайно важным фактором, позволяющим судить о наличии у вещества НХ кислотных свойств, является прочность связи Н—X. Чем прочнее связь, тем труднее идет ее разрыв, который необходим для ионизации вещества. Этот фактор играет решающую роль в случае галогеноводородов. Если Х-атом галогена, то из всех связей Н—X наиболее полярна связь Н—Р. Если бы мы ограничились только первым из рассматриваемых правил, то на этом основании можно было бы ожидать, что НР будет очень сильной кислотой. Однако энергия, необходимая для диссоциации НЕ на атомы Н и Р, намного больше, чем для других галогеноводородов, как это видно по данным табл. 7.3. В результате НР оказывается слабой кислотой, тогда как все остальные галогеноводороды в водных растворах ведут себя как сильные кислоты. [c.96]

    На рис. XIV, 8 схематически показано изменение с повышением концентрации осмотического давления раствора низкомолекулярного вещества (сахара), слабого электролита и высокомолекулярного соединения. Как видно из рисунка, осмотическое давление раствора низкомолекулярного вещества возрастает прямо пропорционально концентрации. В случае слабого электролита, когда осмотическое давление раствора обуславливается не только числом молекул, но и ионов, осмотическое давление возрастает более медленно, чем концентрация, о чем свидетельствует выпуклость кривой, обращенная в сторону ординаты. Такое явление объясняется уменьшением степени ионизации с повышением концентрации. Наконец, осмотическое давление раствора высокомолекулярного вещества возрастает быстрее, чем увеличивается концентрация. Согласно Галлеру, это объясняется тем, что при повышении [c.454]

    В подвижную фазу добавляют иногда органические растворители (метанол, этанол, ацетонитрил, диоксан), действие которых аналогично добавлению растворителей в обращенно-фазной хроматографии при увеличении их количества степень удерживания образца снижается, и этот эффект более силен для менее полярных растворителей. Добавлением органических растворителей можно добиться также изменения селективности системы. Таким образом, снижают время удерживания в ионообменной хроматографии следующие факторы 1) повышение температуры 2) повышение концентрации буферного раствора 3) снижение степени ионизации вещества за счет изменения pH. [c.37]

    Относительное содержание неионизированных молекул в растворе определяется константой ионизации (/Си и /Си ) и экспериментально найденным значением pH раствора. Для веществ кислотного характера концентрацию неионизированных молекул Си. н рассчитывают по формуле [24, 25] [c.90]

    Основы теории электролитической диссоциации Взаимодействие с растворителем растворенного вещества может вызвать распад последнего на ионы Распад растворенного вещества на ионы под действием молекул растворителя называется электролитической диссоциацией или ионизацией веществ в растворах [c.121]

    Растворитель оказывает часто каталитическое действие, способствуя путем сольватации разделению ионов. Таким образом, растворитель благоприятствует спонтанной ионизации веществ в мономолекулярных реакциях и отрыву иона, отщепляющегося в переходном состоянии, при бимолекулярных реакциях. Примером может служить получение четвертичного производного пиридина при помощи бромистого метила в бензольном растворе (а), когда прибавление метилового спирта ускоряет превращение, которое при этом начинает подчиняться кинетическому уравнению третьего порядка, так как скорость становится пропорциональной концентрации пиридина, бромистого метила и метилового спирта. Действие метилового спирта здесь является в подлинном смысле каталитическим, так как он не участвует в реакции, а только способствует лабилизации связи С—Вг, сольватируя ион брома (б). Подобные эффекты часто наблюдаются при некоторых синхронных электронных переходах (см. стр. 327). [c.546]

    Если растворяющееся вещество — потенциальный электролит, состоящий из более или менее полярных молекул (например, хлороводород), взаимодействие этих молекул с полярными же молекулами воды приведет к разрыву молекул растворяемого вещества на ионы, причем этот процесс будет протекать тем легче, чем более полярна связь в молекулах растворяемого вещества и чем более полярны молекулы растворителя (это естественно, так как сильнее притяжение между частицами переходящего в раствор вещества и молекулами растворителя). Например, этиловый спирт—менее полярный растворитель, чем вода, поэтому в спиртовых растворах ионизация растворенных веществ происходит слабее, чем в водных растворах. А в неполярных растворителях, таких, как бензол, тетрахлорид углерода и др., ионизация растворенных веществ обычно и вовсе не наблюдается. [c.90]


    Теплота ионизации — изменение тепловой энергии, необходимое дпя полной ионизации вещества в водном растворе. [c.290]

    Концентрация неионизированных молекул Сци может быть рассчитана по константе ионизации функциональных групп вещества для экспериментально определенной величины pH раствора. Для веществ кислотного характера [c.134]

    В водном растворе энергия взаимодействия компонентов зависит от влияния органических молекул на структуру жидкой воды. Суммарным проявлением этих взаимодействий является величина растворимости. Поэтому коэффициенты активности компонентов в адсорбционной фазе могут быть выражены через растворимость веществ и энергию их диполь-дипольного (или ионного) взаимодействия, характер которого в адсорбционной фазе может существенно отличаться от взаимодействия в жидкости из-за фиксированной ориентации на границе раздела фаз. Активность органических молекул в водных растворах при небольшой их растворимости с достаточным приближением учитывается степенью их ионизации. То обстоятельство, что водородные связи в водных растворах низкомолекулярных веществ играют основную роль, значительно облегчило понимание условий равновесия на границе раздела водный раствор — неполярный адсорбент и нахождение наиболее вероятной ориентации адсорбированных из раствора органических молекул. [c.209]

    Таким образом, по температурной зависимости спектра поглощения концентрированного раствора, по влиянию природы растворителя, по характеру изменений ультрафиолетовой полосы поглощения, а также по виду изменений свечения при увеличении концентрации раствора всегда можно однозначно установить, имеет ли место в растворе ионизация или ассоциация молекул растворенного вещества. [c.291]

    Исходный раствор разбавляют, как было указано выше, однако таким буферным раствором, в котором исследуемое вещество было бы лишь частично ионизировано. Следует отметить, что степень ионизации вещества можно примерно оценить, зная константы ионизации наиболее часто встречающихся функциональных групп и влияние других заместителей в молекуле вещества на эти константы. Эти сведения могут быть получены из главы 8. Измеряют оптическую плотность полученного раствора и вычисляют значение рК из соответствующего уравнения (4.2 или 4.3). [c.72]

    Обычно употребляющееся в кондуктометрическом методе последовательное разбавление раствора изучаемого вещества не дает возможности получить точных результатов для любой кислоты, рКа которой больше, чем 6,5. Причиной этого является неизбежное присутствие углекислого газа в воде, используемой для приготовления растворов. Если более сильная, чем угольная (рКа = 6,5), кислота может подавить диссоциацию первой, то более слабая, чем угольная, кислота неизбежно уменьшает свою ионизацию под влиянием последней. Ионизация очень слабых кислот слишком мала, чтобы в результате ее получились ионы водорода в концентрациях, достаточных для их точного измерения на фоне электропроводности воды. Так, в случае кислоты с рКа = 8, для проведения достоверных измерений нужен 0,01 М раствор, а для кислоты с рКа = 9 приходится брать 0,1 М раствор исследуемого вещества. Если эти концентрации начальные, то последовательным разбавлением невозможно получить большого числа растворов, измерения в которых оставались бы достоверными. [c.89]

    В этом случае константа равновесия характеризует ионизацию вещества в растворе, поэтому ее называют константой ионизации. Очеви/.но, чем больше константа ионизации, тем более ионизировано [c.181]

    Пособие, написанное учениками основоположника современной пюретическон электрохимии академика А, Н, Фрумкина, посвящено наложению теоретических основ электродных процессов в растворах органических веществ. Актуальность рассматриваемых проблем С1 язана с широким применением органических соединений в прикладной электрохимии для регулирования свойств электролитических покрытий и ингибирования коррозии, в органическом электросинтезе, в топливных элементах и химических источниках тока, В книге изложены методы изучения адсорбции органических соедпненггй и закономерности обратимой и необратимой адсорбции на электродах, влияние обратимой адсорбции на две стадии электродного процесса — массопереноса и разряда — ионизации, закономерности электрохимических реакций с участием органических соединений. [c.2]

    Электролитическая ионизация. Огеиень и константа ионизации. Изучение разбавленных растворов показало, что все их общие свойства (понижение давления пара, изменение температур замерзания и кипения, величина осмотического давления) изменяются пропорционально числу частиц растворенного вещества. Такие свойства называются коллтативными. Эта общая закономерность оказалась справедливой для растворов органических веществ в воде и для растворов в органических растворителях. При исследовании водных растворов солей, кислот, оснований было обнаружено, что изменение соответствующего свойства в зависимости от концентрации раствора значительно превышает ожидаемую величину. Например, понижение температуры замерзания моляльного раствора Na l превышает почти в два раза криоскопическую постоянную для воды (3,36° вместо [c.152]

    Ионизация веществ в полярных растворителях сопровождается образованием вокруг иона сольватной рубащки, состоящей из молекул растворителя. Эта сольватная оболочка образуется за счет ион-дипольного взаимодействия молекул-диполей с ионом растворенного вещества. Для оценки числа молекул растворителя, которые создают сольватную оболочку иона (сольвата-ционного числа 51 , есть ряд методов (ЯМР-, УФ- и ИК-спектроскопический, по электропроводности, вязкости и т.д.). Данные разных методов расходятся. Напрймер, для Ыа" " в воде 13 (по числу переноса), 3 (по электропроводности), 3 (по вязкости), 4 (по сжимаемости раствора), 4 (по энтропии растворения) и от 3 до 4,5 (по ЯМР ). Измеренные методом ЯМР для ряда катионов в Н2О ЗМ - 3,4+5 для 3-4 для Ма+, 1-4,6 для К+, 4 для Ве2+, 3,8 для 4,3 для Са2+, 5,7 для Ва2+, 6 для Ре2+, Со2+, 2п2+. [c.276]

    Спектрофотометрическое титрование. Метод спектрофотометрического титрования основан на измерении оптической плотности исследуемого раствора в процессе титрования, обусловленного ба-тохромным или гипсохромным сдвигом максимума поглощения в спектрах исследуемых веществ в процессе ионизации (рис. 19). Готовят раствор исследуемого вещества с концентрацией [c.68]

    Прямое действие заключается в том, что ионизация вещества вызывает все наблюдаемые в нем радиационно-химические явления. Почти все реакции синтетических полимеров, которые мы описали в предыдущих разделах, относятся к этому типу. Прямое действие неизбежно преобладает при облучении чистых полимеров. В растворах оно может осуществляться в различной сгсиени. Теория мишени, на которую мы ссылались при рассмо- [c.230]

    Рассмотрим условия ионизации веществ в раствори гелях, молекул ,I которых могут отдавать и присоединять нротони. Введем такие обозначения  [c.130]


Смотреть страницы где упоминается термин Растворы ионизация веществ: [c.326]    [c.163]    [c.24]    [c.218]    [c.152]    [c.175]   
Общая и неорганическая химия Изд.3 (1998) -- [ c.0 ]

Общая и неорганическая химия (1981) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Определение констант ионизации органических веществ в растворах



© 2024 chem21.info Реклама на сайте