Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклоалканы строение

    Определите формулу циклоалкана, на сгорание которого затрачивается объем кислорода в 9 раз больший, чем объем паров циклоалкана. Назовите этот циклоалкан, если известно, что его углеводородный скелет имеет неразветвленное строение. [c.167]

    Изомеры циклоалканов различаются числом атомов углерода в цикле, строением и расположением заместителей в цикле. Так, изомерными циклопентанами С5Н10 являются [c.313]


    При действии брома на циклоалкан СзНю получено бромпроизводное с содержанием брома 53,7 % Каково строение исходного углеводорода и полученного бромпроизводного  [c.17]

    В молекулах гибридных углеводородов имеются в различных сочетаниях структурные элементы всех типов моно- и полицикли — ческих аренов, моно- и полициклических пяти или шестикольчатых цирланов и алканов нормального и разветвленного строения. Их условно можно подразделить на следующие 3 типа 1) алкано-циь ановые 2) алкано-ареновые и 3) алкано-циклано-ареновые. По существу, рассмотренные выше алкилпроизводные циклоалканов и аренов можно отнести к первым двум типам гибридных углеводородов. [c.67]

    Напишите структурные формулы изомерных циклоалканов состава СбН12 и назовите их. Укажите, какие изомеры отличаются положением замещающих групп, а какие — строением цикла. [c.16]

    Строение циклоалканов первой группы (е теетпчленпыми кольцами) может быть отражено следующими формулами  [c.135]

    Циклоалканы более сложного строения не обнаружены в нефтях. Циклоалканам присущи следующие особенности геометрическая изомерия молекул способность к структурным превращениям в процессах нефтепереработки положительное влияние на качество топливных и масляных дистиллятов связь строения с генезисом и метаморфизмом нефти. [c.207]

    Газовая хроматография — важнейший метод анализа индивидуального состава бензиновых фракций нефти и некоторых более высококипящих компонентов — аренов, алканов нормального и изопреноидного строения, адамантанов и других полициклических циклоалканов, гетероатомных соединений. Особенно большие достижения в определении состава нефти и нефтепродуктов связаны с открытием в 1952 г. Мартином и Джеймсом газожидкостной хроматографии и в 1957 г. Голеем капиллярной хроматографии. [c.115]

    Исследования строения и идентификация индивидуальных циклоалканов нефтей и их фракций сопряжены с большими трудностями из-за крайне незначительных различий свойств изоалканов и гомологов циклоалканов, не разделяющихся при ректификации и хроматографии. Требуется осуществлять многократные превращения циклоалканов с помощью реакций изомеризации, дегидрирования, деструкции в углеводороды других классов, поддающихся анализу известными методами. [c.208]

    Строение и химические свойства. Химические свойства и устойчивость циклоалканов во многом определяются размерами цикла. Так, наибольшую химическую стойкость в ряду этих соединений проявляют пяти- и шестичленные циклы. В то же время циклопропан и в меньшей степени циклобутан — вещества неустойчивые. [c.265]


    Необходимо отметить, что в последние годы гкдроге-нолиз особенно подробно изучался в первую очередь на примере этана, а также других алифатических углеводородов (С4—С7). Эти исследования достаточно полно от-раженыв ряде обзоров [5— 12]. Значительно менее полно представлены в этих обзорах проблемы гидрогенолиза циклоалканов между тем гидрогенолиз циклоалканов — очень важная реакция, обладающая, как показано ниже, специфическими особенностями, обусловленными как строением исходных циклоалканов, конформационными эффектами в них, так и природой металла-катали-затора. Особое значение имеет соотношение геометрий решетки катализатора и циклической части углеводорода. [c.88]

    Образование циклоалканов протекало, видимо, двумя путями. Один из этих путей не сопровождался слишком глубокими преобразованиями исходных молекул несзтематеринского вещества. В результате потери некоторых функциональных групп и реакций диспропорционирования водорода образовались углеводороды, сохранившие черты строения исходных веществ, с реликтовым характером. В качестве примера можно отметить холестан, образовавшийся из циклического спирта холестерина  [c.41]

    Достпгиутис успе.хи в области исследования состава и строения циклоа,лка 10в eme не означают, что химический состав нефти полностью изучен. Особенно трудной областью по-прежнему остается химия циклоалканов как весьма сложного и многокомпонентного класса нефтяных углеводородов. [c.136]

    Нефтяные системы состоят из низко- и высокомолекулярных углеводородных и неуглеводородных соединений. Углеводородными компонентами нефтяных систем являются в основном представители трех классов соединений алканов, циклоалканов и аренов, а также значительное количество углеводородов смешанного гибридного строения. Алкены н алкадиены в природных нефтяных системах обычно не встречаются, однако могут содержаться в продуктах переработки нефти. Неуглеводородные соединения нефти представлены главным образом смолами и асфальтенами. Элементный состав нефтяных систем колеблется в широких пределах. Так, для природных нефтей массовое содержание основных элементов углерода С, водорода Н и гетероатомов серы 5, азота N и кислорода О составляет С—83— 87, Н—12—14, 5— 0,001—8, N — 0,02—1,7, 0—0,05—3,6%. В значительно меньших количествах в нефтях присутствуют и многие другие элементы. В табл. 4 помеш.ены встречающиеся в нефтях углеводороды и гетеросоединения. [c.21]

    Согласно данным ряда авторов [134—136], масляные фракции являются дисперсными системами аренов в циклоалкановых дисперсионных средах, причем в маслах различного уровня вязкости (дистиллятных, остаточных, компаундированных) образуются а.с-социаты различного строения. Неподчинение аддитивности таких физико-химических смесей алканов, циклоалканов и тяжелых аренов, как диэлектрическая проницаемость и экстинкция, обусловлено проявлением межмолекулярного взаимодействия между компонентами смеси. В работе [135] показано, что арены в растворах образуют ассоциаты, состав и устойчивость которых зависят от химического строения взаимодействующих молекул, а бензольное кольцо является специфическим центром межмолекулярного взаи-молействия. [c.34]

    Строение циклоалканов изучено недостаточно, особенно в средне- и высококипящих фракциях нефтей, так как отсутствуют эффективные методы их выделения и разделения, [c.207]

    Дегидрирование. В зависимости от строения циклоалканов при дегидрировании могут быть получены моно-, би- и полицикличе- [c.214]

    Молекулярное строение кристаллизующихся углеводородов обуславливает различную способность их к плотной упаковке при кристаллизации и образованию твердых растворов различной структуры. Исследования структуры кристаллов, образующихся при кристаллизации углеводородов разных гомологических рядов, показали /27/, что при кристаллизации из растворов нефтяных фракций все они образуют кристаллы орторомбиче-ской формы со ступенчатой слоистостью кристаллов, т.е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей. Наибольшие размеры и число ромбических плоскостей имеют кристаллы нормальных алканов. Наличие нафтеновых и особенно ароматических структур в составе молекул кристаллизующегося вещества приводит к уменьшению размеров и слоистости образующихся кристаллов. При совместной кристаллизации углеводородов различных гомологических рядов повторяются эти же закономерности образуются смешанные кристаллы переменного состава орторомбической структуры, при этом чем больше циклических углеводородов, тем меньше размеры кристаллов и число наслоений. Способность циклических углеводородов (циклоалканов и аренов) образовать смешанные кристаллы с алканами обусловливается наличием в их молекулах длинных алкильных цепей в основном нормального строения. При отсутствии таких цепей циклические углеводороды кристаллизуются при значительно более низких температурах. [c.27]


    Содержание алканов нормального строения в реактивных 5-7, в дизельных топливах 10-20%. Изоалканы в топливах характеризуются малораз-ветвленным строением, количество боковых цепей невелико, их длина - до 2-5 атомов углерода. Среди циклоалканов обнаружены moho-, ди-, три- и тетра-замещенные циклогексаны и циклопентаны, в боковых цепях содержатся 1 -3 атома углерода. Присутствуют и бициклические кондесированные циклоалканы (декалин и его гомологи). [c.16]

    Синтетические пути получеиия алканов и циклоалканов представляют интерес почти исключительно для лабораторных целей, когда необходимо иметь чистый углеводород определенного строения н изучить его свойства. Для промышлеиных целей используется природное углеводородное сырье газообразное (природный газ, попутные нефтяные газы) и жидкое (нефть). [c.242]

    Углеводороды в нефти представлены алканами, циклоалканами, голоядерными ароматическими углеводородами и структурами смешанного строения, состоящими из ажановых, циклоалкановых и ароматических фрагментов в различных сочетаниях [3...5,7...13,31,52,64]. Гетероатомные органические соединения нефти представлены в основном соединениями серы (меркаптаны, сульфиды, дисульфиды, тиофены), кислорода (карбоновые кислоты, фенолы, эфиры, лактоны и гетероциклические соединения) и азота (хинолины и пиридины, карбазолы, индолы, пирролы, порфирины и вещества, не извлекаемые минеральными кислотами) [3..8,31,52,53]. В нефтях обнаружено около 50 различных элементов - Ы, N3, К, Си, Ао, Аи, Ве, М , Са, 2п, 8г, Сб, Ва, Hg, Ка, В, А1, Оа, 1п, Ьа, Т1, 51, Т , Се, 5п, РЬ, V, А , 5Ь, В1, С, Мп, Ре, Со, N1, Мо, Ки, С1, Вг, I, Се, N6, ТЬ, и и другие [5,6,14,32,33,64], способных к образованию элементоорганических соединений [65]. [c.13]

    Это несоответствие теоретических представлений экспериментальным фактам побудило Г. Заксе, а впоследствии Э.Мора модернизировать теорию Байера, сняв постулат последнего о плоском строении циклоалканов с числом атомов углерода, большим или равным шести. Они предположили, что при замыкании циклов валентные углы у всех атомов углерода остаются тетраэдрическими, вследствие чего угловое напряжение исчезает, а циклы становятся неплоскими. [c.478]

    Физические свойства Алициклические насыщенные углеводороды имеют более высокие температуры кипения и плавления, чем нециклические с тем же числом атомов углерода (табл 16 5) Они не растворяются в воде, но растворяются в неполярных органических растворителях Типы связей, пространственное строение В молеку лах насыщенных циклоалканов атом углерода находится в состоянии 8р гибридизации, все связи углерода являются а связями и углы между связями С—С должны быть равны 109°28 В правильном же треугольнике углы [c.249]

    К циклоалканам относят предельные углеводороды общей формулы СдНзц, имеющие циклическое строение. Названия циклоалканов строятся из названий соответствующих алканов с приставкой "цикло", например  [c.138]

    Нефти являются природными углеводородными системами, обычно на 80-90% состоящими из различных углеводородов. В товарных и пластовых нефтях преобладают парафиновые углеводороды (обычно 30-35, иногда до 40-50% по объему) и нафтеновые (25-75%), ароматические (10-20, иногда до 35%), остальные углеводороды смешанного, или гибридного, строения. Таким образом, основным компонентом нефти являются углеводородные смеси — алканов (парафинов), циклоалканов, аренов. Имеются сведения [c.41]

    Алканы и циклоалканы (парафины и нафтены). Общее содержание алканов и циклоалканов в нефтях равно 25-40%, в некоторых нефтях — до 70%. Из нефтей России и стран СНГ наиболее парафинистыми являются нефти, добываемые в Казахстане на полуострове Мангышлак, грозненская и озексуатская парафинистая, С повышением средней молекулярной массы фракций нефти содержание алканов в них уменьшается. В бензиновой и средних дистиллятных фракциях содержатся жидкие алканы, в тяжелых фракциях и остатке — твердые парафины с числом углеродных атомов 16 и выше. В составе алканов нефти наиболее широко представлены соединения нормального строения и монометилзамещен-ные с различным положением метильной группы в цепи. [c.42]

    Пиролиз. Основное назначение процесса пиролиза углеводородного сырья — получение низших алкенов. Процесс проводят при 800—900 °С под давлением, близким к атмосферному. Для снижения парциального давления углеводородов сырье обычно разбавляют водяным паром. Оптимальным сырьем для производства этилена является этан. Выход этилена при этом достигает 80%. Значительный выход этилена наблюдается также при пиролизе алканов нормального строения из пропана — до 48 %, из бутана —45 %. При пиролизе разветвленных алканов образуются преимущественно алкены Сз—С4 и алкадиены, а при высокой температуре — также аллен и метилацетилен. Выход низших алкенов при пиролизе циклоалканов и аренов невелик. [c.323]

    Спектроскопическое исследование цис- и /пранс-циклоалкан-диолов-1,2 (ЬХХУа), а также цис- и транс-2-аминоциклоалканолов (ЬХХУб) показало, как меняются значения Аг(ОН) по мере увеличения цикла в результате исследования были получены важные данные о пространственном строении этих соединений. В малых циклах значения Дг(ОН) для цс-изомеров выше, чем для трансизомеров, тогда как в средних и больших циклах наблюдается обратное (рис. 4). Такая инверсия происходит в случае десятичленного цикла диолов [1221 и восьмичленного кольца в аминоспиртах [45]. Эти данные показывают, что в больших циклах транс-расположенные вицинальные заместители больше сближаются, чем ыс-заместители. [c.149]

    Низкая детонационная стойкость этих углеводородов объясняется тем, что они очень легко окисляются с образованием пероксидов в условиях предпламенного окисления. Разветвленные алканы обладают более высокой ДС, чем углеводороды нормального строения. Наибольшие октановые числа имеют изомеры с парными метильными группами у одного углеродного атома (неогексан, триптан, эталонный изооктан). Низшие представители ряда циклоалканов (циклопентан, циклогексан) обладают хорошей ДС. [c.103]

    Теория валентных связей пригодна для описания строения молекул с а-связями и одиночными тс-связями, т. е. алканов, циклоалканов, алкенов, ал- [c.54]

    Значительно менее ясно строение мостиковых высокомолекулярных циклоалканов (третья группа). Это производные бицикло [3.2.1] октана, бицикло[2.2.2]октана, адамантана  [c.216]

    Низшие представители ряда циклоалканов (циклопен-тан, циклогексан) обладают неплохой ДС и высокой приемистостью к ТЭС. Циклоалканы с боковыми цепями нормального строения имеют низкие октановые числа, причем с удлинением цепи ДС значительно снижается. Разветвление боковых цепей и увеличение их числа способствует повышению октанового числа. [c.416]

    Конформация циклогексана уже обсуждалась в разделе 1.3.7.2. Поэтому здесь следует высказать лишь краткие заключения о строении других циклоалканов, которые, исключая плоский по определению циклопропан, также построены неплоско. [c.210]


Смотреть страницы где упоминается термин Циклоалканы строение: [c.62]    [c.89]    [c.42]    [c.106]    [c.111]    [c.341]    [c.65]    [c.210]    [c.117]    [c.194]    [c.156]    [c.1791]    [c.163]    [c.74]    [c.160]    [c.334]   
Органическая химия Том1 (2004) -- [ c.212 ]

Органическая химия (2002) -- [ c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Циклоалканы



© 2024 chem21.info Реклама на сайте