Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент в жидкой фазе

    Приближенное интегрирование уравнения (П.17) основано па использовании уравнения (1.66), связывающего равновесные концентрации паровой и жидкой фаз бинарной системы. Принимая среднее значение коэффициента относительной летучести сс р в пределах температур процесса перегонки, можно получить [c.70]

    Коэффициент обогащения всегда больше единицы. Это доказывает, что концентрация низкокипящего компонента в паровой фазе всегда больше, чем в жидкой фазе. Он не является величиной постоянной и обычно возрастает с понижением температуры системы. Для практических расчетов принимается некоторое среднее значение а, равное среднему геометрическому из крайних его значений. [c.193]


    Обзор методов определения коэффициентов теплопроводности в зернистом слое с движущейся газовой (жидкой) фазой [c.113]

    Здесь Kyj - коэффициент массопередачи и Рх частные коэффициенты массоотдачи по паровой и жидкой фазе соответственно , 5j - эффективная площадь тарелки. [c.67]

    D2 — коэффициент диффузии реагента в жидкой фазе, [c.9]

    Уравнение (1.47) получено в предположении, что жидкая фаза является идеальным раствором, а паровая — смесью идеальных газов. Если в этом случае уравнение (1.47) справедливо для всего интервала изменения концентрации -того компонента (от О до 1), то оно представляет собой закон Рауля, и коэффициент оказывается равным давлению Р насыщенного пара -того компонента лри температуре равновесной системы, т. е. [c.28]

    Количество насыщенного водяного пара, определяемое по уравнению (11.40), необходимо для обеспечения суммарного давления паров равновесной системы, отвечающей данной температуре. В реальных условиях процесс перегонки ведется с конечной скоростью и поэтому жидкая и паровая фазы фактически не имеют достаточного времени для достижения полного равновесия. Если при этом учесть еще хотя и небольшую, но все же имеющуюся взаимную растворимость отгоняемого компонента с водой, а также и сопротивления массопередаче и теплопередаче в реальном процессе, то будет ясно, что парциальные давления компонентов в жидкой фазе будут несколько меньше, чем соответствующие теоретические значения. Эта особенность процесса учитывается обычно введением некоторого поправочного коэффициента насыщения В, приближенно определяемого выражением  [c.79]

    В приведенных уравнениях N1 — число мольных долей компонентов в смеси для паровой фазы 1/ и для жидкой фазы хг, Тир.1 и Ркр./ — критические температура и давление компонентов значения коэффициентов Л/, В/ и С/ для азота и углеводородов приведены в табл. 1.4 и 1.5. При содержании азота в смеси с природным газом с большим содержанием метана можно принять dN =d . [c.46]

    Уравнение (5) не дает какой-либо реальной новой информации о рассматриваемых процессах. В самом деле, толщина пленки б, как и коэффициент абсорбции — неизвестны. Можно только полагать, что значение б зависит лишь от гидродинамических условий в жидкой фазе. На основе этого уравнения (5) можно сделать вывод о том, что при одинаковых гидродинамических условиях коэффициент абсорбции должен быть пропорционален коэффициенту молекулярной диффузии .  [c.15]


    В случае контакта жидкой фазы с твердой ил - намного более вязкой жидкой фазой будет пропорционален коэффициенту диффузии в степени /3, что снова не соответствует уравнению (5). [c.16]

    Коэффициент абсорбции возрастает с увеличением скорости потока это согласуется с предположением, что сопротивление массопереносу в жидкой фазе является определяющим. [c.131]

    При скорости жидкости 14630 кг м -ч) общий газофазный коэффициент абсорбции составил 1 кг-мол/ ч-м -атм) на насадке из колец Рашига размером 25 X 25 мм. Эта величина хорошо согласуется с рассчитанной по эмпирическим корреляциям при допущении о сосредоточении сопротивления массопереносу в жидкой фазе и протекании процесса в диффузионном режиме. [c.131]

    По графику коэффициента фугитивности, представленному на рис. 1.5, fJP =0,8S0, следовательно, фугитивность метана в жидкой фазе [c.50]

    Для расчета по этому уравнению значений -фактора систем, паровая и жидкая фазы которых являются идеальными растворами, достаточно располагать уравнением состояния паров (1.12) или коэффициентом сжимаемости г. [c.47]

    Температура наряду с давлением абсорбции является вторым основным параметром. От давления и температуры при данном составе газа и абсорбента зависит константа фазового равновесия. Со снижением температуры абсорбции константа равновесия уменьшается, а значит, увеличивается переход тяжелых углеводородов в жидкую фазу, другими словами, увеличивается коэффициент их извлечения. Температуры ниже [c.163]

    Расчет коэффициентов активности компонентов бинарных систем по уравнениям Ван Лаара и Маргулеса. Случай парожидкостного равновесия, когда жидкая фаза является неидеальным [c.51]

    Процессы азеотропической перегонки применяются не только для разделения однородных в жидкой фазе азеотропов, но и для разделения систем компонентов с очень близкими точками кипения, ректификация которых обычными методами, вследствие близости коэффициента относительно летучести к единице, оказывается весьма затруднительной. В этом случае третий компонент должен образовать с одним из компонентов системы гомогенный или гетерогенный азеотроп, кипящий при более низкой температуре, чем низкокипящий компонент исходной бинарной системы, и играющий роль верхнего продукта фракционирующей колонны. [c.138]

    Особенно просто определить коэффициенты активности при наличии опытных данных по р, Г и составу азеотропной смеси, характеризующейся равенством составов паровой и жидкой фаз. Если Хд = у , то, согласно уравнению (1.86) [c.53]

    Коэффициент диффузии Z) обратно пропорционален вязкости п отражает свойство системы, которое определяет число единиц переноса жидкой фазы. Из уравнения (III.158) следует, что маловязкие системы с высоким коэффициентом диффузии в жидкости Dy . должны проявлять низкие жидкофазные сопротивления массо-отдаче. [c.215]

    Если азеотроп относится к категории неоднородных в жидкой фазе, то после конденсации и охлаждения дестиллатных паров, он расслаивается на два слоя, из которых один, более богатый третьим компонентом, возвращается обратно в перегонную систему, а другой представляет собой либо практически чистый низкокипящи компонент системы либо же подвергается дополнительному разделению для получения достаточной степени чистоты. Так, например, вода и уксусная кислота не образуют азеотропа, но их температуры кипения различаются всего на 18 С, так что обычная ректификация этой системы представляет известные трудности, благодаря небольшой величине коэффициента обогащения. [c.138]

    Из графика коэффициента активности, представленного на рис. 1.4, имеем /i/Pi = 0,880 п фугитивность метана в жидкой фазе [c.43]

    Коэффициент ф является мерой некоторой эффективности толщины среды газовой или жидкой фазы, которая [c.70]

    Эмпирическая корреляция коэффициентов абсорбции (при лимитировании процесса сопротивлением в жидкой фазе) в форме соотношений между критериями Стэнтона, Рейнольдса и 111мидта имеет вид  [c.15]

    Из уравнений (8.1) и (8.2) можно увидеть, что общая скорость массопередачн есть линейная функция движущей силы в жидкой фазе с — с (как и предполагалось при определении коэффициента абсорбции), только в случае реакции первого порядка. Это создает некоторую трудность, когда заметно сопротивление массопереносу в газовой фазе. [c.91]

    При постоянной общей концентрации раствора коэффициент абсорбции увеличивается с понижением концентрации бикарбоната. При 40%-ном содержании бикарбоната коэффициент абсорбции равен 1,0, а при 10%-ном содержании ЫаНСОз—1,7 и для КНСОз—1,3. Изменение содержания бикарбоната от 40 до 107о приводит к изменению константы скорости реакции в б раз. Эти результаты Комстока и Доджа соответствуют предположению, что сопротивление в жидкой фазе является определяющим, и процесс протекает в режиме медленной реакции в условиях, приближающихся к диффузионному режиму. [c.131]


    Результаты работы Комстока и Доджа были подтверждены Ропером [16] в его работе с использованием дискового колонного абсорбера. Фурнес и Беллингер [14] показали, что общий коэффициент абсорбции почти не зависит от скорости газа и возрастает с увеличением скорости потока жидкости. Отсюда ясно, что определяющим является сопротивление массопереносу в жидкой фазе. [c.131]

    При постоянной величине коэффициента абсорбции и при высоких парциальных давлениях СОг величина 1,25/сг-лол/(ч-л Х Хатм) должна соответствовать либо условиям быстрой реакции, либо сосредоточению сопротивления массопередаче в газовой фазе, если поведение при низких парциальных давлениях соответствует процессу мгновенной реакции. Величина 1,25, действительно, намного ниже рассчитанной при допущении условии быстрой реакции или условий сосредоточения сопротивления массопередаче в газовой фазе и приближенно соответствует величине, которая может быть рассчитана при сосредоточении сопротивления массопередаче в жидкой фазе при условиях медленной реакции. [c.133]

    Общий коэффициент абсорбции сравнительно нечувствителен к скорости потока газа, что указывает на лимитирование мас-сопередачи сопротивлением в жидкой фазе. [c.142]

    Пусть Мо — концентрация соли M X в объеме жидкости. Допустим для упрощения, что коэффициенты диффузии всех компонентов равны. При допущении, что реакция (XVII) должна быть мгновенной, в любой точке жидкой фазы выполняются следующие условия. [c.158]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    В экстремальной точке бинарного гомоазеотропа концентрации паровой и жидкой фаз одинаковы и, следовательно, здесь коэффициент относительной летучести компонентов системы равен единице. Разделительный агент изменяет относительную летучесть компонентов исходной смеси и поэтому по крайней мере с одним из них должен образовать неидеальпый раствор. То же относится и к случаю разделения близкокипящих компонентов, относительная летучесть которых близка к единице. [c.329]

    Поскольку отклонения от идеальности будет проявлять только жидкая фаза, то эти отклонения учитываются путем ипедения в уравнение (1.82) закона Раули поправочного коэффициента актпвпости [c.50]

    Для расчета коэффициентов диффузии в жидкой фазе приходится также пользоваться эмпирическими корреляциями. К сожалению, скудность опытных данных, которыми мы располагаем, не позволила пока количественно выявить довольно заметное влияние концентрации на коэффициент диффузии в жидкой фазе. Поэтому известные корреляции опытных данных относятся к разбавленным растворам, в которых нарушающим влиянием концентрации растворенного вещества можно пренебречь. Так, для приблингенной оценки коэффициентов диффузии к разбавленном кидком растворе можно пользоваться следующим уравпеиием  [c.69]

    Если диффундирующее вещество слабо растворимо в жидкой среде, то параметр т должен быть велик, ибо при равновесии весьма малая концентрация в жидкой фазе должна соответствовать большой концентрации в газе. Член 11т к в (11.43) становится пренебрежимо малым, и общий коэффициент массопередачи Кх практически совпадает с коэффициентом массоотдачи ж-В этом случае главное сонротивление диффузии оказывается ншдкостью и поэтому говорят, что ход массопередачи контролируется пограничным слоем на жидкостной стороне межфазовой поверхности. Если же диффундирующее вещество хорошо растворимо в жидкой среде, то параметр т должен быть мал, ибо нри равновесии уже небольпшя концентрация а в газовой фазе соответствует весьма больпкш концентрации его в жидкости. Член т кт в (11.42) становится пренебрежимо малым, и общий коэффициент массопередачи Ку практически совпадает с коэффициентом массоотдачи k . В этом случае главное сопротивление диффузии оказывается уже газом и поэтому говорят, что ход массопередачи контролируется пограничным слоем на газовой стороне межфазовой поверхности. [c.76]

    Если принять воду практически )ш ])астворнмой в углеводородной жидкой фазе, то в уравнениях (111.47) — (111.49) следует положить Хх = 0. Также п в случае нерегопкн с перегретым водяным паром ввиду от1 ут( тиня )Ю7(Ы в кндко11 фазе Хг = О п по- г ра вочный коэффициент [c.112]

    Пример 3, Рассчитать радиальный коэффициент теплопроводности в реакторе с неподвижным слоем гранулированного катализатора и проходящим через него жидкостным потоком реакционной смеси. Теплопроводность жидкой фазы и материала катализатора соответственно равна Хр = 0,147 ккал/м ч град, = = 0,043 ккал/м ч град. Порозяость насадки катализатора е = = 0,35. Радиальный коэффициент цереиоса вещества слоя катализатора Dj. = 5,5 10 м /ч. Плотность жидкой фазы р = = 1060 кг/лЗ, ее теплоёмкость Ср = 0,461 ккал/кг град. [c.71]


Смотреть страницы где упоминается термин Коэффициент в жидкой фазе: [c.15]    [c.86]    [c.112]    [c.29]    [c.33]    [c.52]    [c.329]    [c.5]    [c.73]    [c.88]    [c.79]    [c.83]    [c.95]    [c.179]   
Газожидкостные хемосорбционные процессы Кинетика и моделирование (1989) -- [ c.12 ]

Дистилляция (1971) -- [ c.14 , c.133 , c.148 , c.149 , c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза



© 2024 chem21.info Реклама на сайте