Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость критическая

    Наиболее распространенным способом оценки склонности к хрупкому разрушению являются испытания серии образцов с V-образным надрезом на ударный изг иб при различных температурах (КСУ ). Критерий оценки - критическая температура перехода от вязкого к хрупкому разрушению или порог хладноломкости. Т р соответствует темературе достижения определенной минимальной ударной вязкости, например, равной 200 кДж/м Чем выше Г р, тем больше склонность метшша к хрупкому разрушению. Т р служит для сравнительной оценки материалов, отличающихся составом и структурой. Применительно к испытанию сварных соединений V-образный надрез наносится в исследуемой зоне соединения по оси сварного шва, зонам сплавления или термического влияния. [c.179]


    Это уравнение отражает идеальное (ньютоновское) течение жидкости, которое характеризуется следующими тремя чертами появлением сдвиговых деформаций при сколь угодно малых напряжениях, отсутствием эффектов упругости при течении и независимостью вязкости от скорости и напряжения сдвига. Полимеры, однако, обнаруживают отклонение от ньютоновского течения по всем указанным признакам. Во-первых, они могут проявлять признаки пластических тел, т. е. тел, характеризующихся наличием предела текучести — критического напряжения, только после достижения которого способно развиваться течение. Во-вторых, течение полимеров сопровождается накоплением высокоэластической энергии, что вызывает появление напряжений, перпендикулярных направлению течения, и, как следствие этого, разбухание экстру-дата, усадку образца и т. д. Полимеры, таким образом, наиболее ярко проявляют признаки вязкоупругих тел. Наконец, вязкость полимеров, как правило, сильно зависит от у и т, уменьшаясь с возрастанием последних (явление аномалии вязкости). Вязкость, соответствующая данному режиму течения и называемая обычно эффективной, будет рассмотрена ниже, здесь же мы остановимся на молекулярной трактовке ньютоновской вязкости  [c.50]

    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]

    Реактивное топливо должно легко воспламеняться нри любых температурах и давлениях оно должно сгорать ровно, без срыва и проскока пламени, не давая при горении никаких отложений. Зависимость между структурой топлива, с одной стороны, и температурой самовоспламенения, критической энергией восиламенения, задержкой воспламенения, пределами воспламеняемости, интервалом закалки, скоростью пламени и дымообразованием, с другой, — изучена рядом исследователей [369—3711. Стандартизуется также вязкость и плотность, от которых зависит распыляе-мость топлив [372]. [c.447]

    Соломко В. П,,Шиманский Ю, И., Укр. хим, ж,, 21, 480 (1955), Вязкость, критическая температура растворы вода — спирт, вода — кислота. [c.369]

    Вид сжимаемого газа, т. е. его физические и химические свойства (плотность, вязкость, критические температуры, взаимодействие с металлами и смазкой, инертность и т.д.), существенно влияет на выбор типа компрессора и его конструктивное исполнение. [c.145]


    Для характеристики однородных смесей Россини [2] предложил следующую методику. Определяют температуру кипения, удельный вес, показатель преломления, дисперсию, вязкость, критическую температуру растворения в одном или в нескольких подходящих растворителях, инфракрасные спектры, ультрафиолетовые спектры, элементарный состав и средний молекулярный вес. При помощи этих данных уже можно вывести молекулярную формулу и путем правильной комбинации с величинами, отвечающими известным чистым соединениям, определить тип углеводородов, из которых состоит однородная смесь, как-то парафины, цикло- [c.169]

    Следовательно, существует такая критическая величина вязкости VJ.p, при которой потери напора в трубопроводах возрастают настолько, что подача топлива может прекратиться. [c.46]

    Большинство нефтяных и синтетических масел при обычных температурах и давлениях подчиняется закону Ньютона и относится к ньютоновским жидкостям. Вязкость определяет течение жидкости только в ламинарном потоке. При увеличении скорости ламинарный поток завихряется, послойный сдвиг разрушается. Переход от ламинарного к турбулентному потоку определяется критическим значением числа Рейнольдса Ре= = бус /т), где (1 — диаметр трубы или величина зазора. Распределение скоростей в ламинарном и турбулентном потоке заметно различается (рис. 5.12). В первом случае для вязкой жидкости устанавливается параболическое распределение скоростей с ярко выраженным максимумом у оси трубы. При турбулентном режиме скорости по сечению потока за счет его завихрения выравниваются. Отметим, что для пристенного слоя в цилиндрической трубе характерны значительные градиенты скоростей. Критическое значение Ке близко к 2500. Вследствие достаточно высокой вязкости масел и небольшой величины зазоров для смазочных масел, как правило, реализуется ламинарный поток. [c.267]

    Изменение ударной вязкости легированных сталей с понижением температуры происходит плавно (рис. 7). За критическую температуру хладноломкости легированных сталей принимают . - мпературу при которой величина ударной вязкости состав-ляе. 60% начального значения при нормальной температуре. [c.14]

    Для компрессорных масел, имеющих большую вязкость по сравнению с вязкостью бензинов, спиртов и воды, критическое число Вебера в значительной мере зависит от вязкости. [c.289]

    В химической и смежной с ней отраслях промышленности жидкие смеси, концентрирование которых осуществляется выпариванием, отличаются большим разнообразием как физических параметров (вязкость, плотность, температура кипения, величина критического теплового потока и др.), так и других характеристик (кристаллизующиеся, пенящиеся, нетермостойкие растворы и др.). Свойства смесей определяют основные требования к условиям проведения процесса (вакуум-выпаривание, прямо- и противоточные, одно- и многостадийные многокорпусные выпарные установки), а также к конструкциям выпарных аппаратов. [c.86]

    При малых количествах диспергированной фазы насадка критических размеров обладает свойством крупной насадки, при больших же количествах этой фазы быстро увеличиваются размеры капель. Критические размеры элементов насадки зависят от физикохимических свойств системы, причем наибольшее влияние оказывают межфазное натяжение, силы сцепления и вязкость жидкостей. Для системы толуол—диэтиламин—вода в колоннах диаметром 75, 100 и 150 мм был получен [99] для колец Рашига критический размер 9,5 мм, размер ниже критического 6,35 мм. Кольца диаметром 12,35 19,0 и 25,4 мм представляли собой насадку размерами больше критического, здесь капли сохраняли свои размеры до момента захлебывания. [c.326]

    Библиотека физико-химических свойств предусматривает возможность расчета и хранения информации о физико-химических свойствах различных веществ. Информация хранится как в виде констант (молекулярный вес, критические параметры и т. д.), так и в виде коэффициентов аппроксимирующих зависимостей (теплоемкость, вязкость и т. п.). В рамках АСАС ХТС реализуются стандартные подпрограммы расчета физикохимических свойств индивидуальных веществ и их смесей. При моделировании ХТС необходимая информация о свойствах однократно переносится с дискового пакета в оперативную намять и хранится до окончания расчетов. [c.591]

    В рассмотренном примере при известных значениях критических параметров Т р и Ркр при вычислении вязкости чистого компонента их расчет необходимо исключить, задав дополнительную точку входа. Для этого функцию можно переписать в виде [c.297]

    Характеристический фактор связан также с вязкостью, анилиновой точкой, относительной молекулярной массой, критической температурой, составом и т. д. Тот факт, что он косвенным образом связан также и с ЭМР, имеет большое значение, так как ЭМР, в свою очередь, можно рассчитать с помощью уравнения (25), зная коэффициент рефракции. Поэтому приведенный на рис. 28 график и соотношение (31) могут оказаться полезными при оценке величины ЭМР. [c.42]

    Таким образом, сопоставляя две группы экспериментальных точек 5—10 и 3—4, можно прийти к заключению, что природа их отклонений от прямой различна. Говоря иначе, проявляется факт, который корректно интерпретировать в соответствии с уравнением [6.5(2)] как аморфи-зация. А именно, с уменьшением диаметра областей неоднородностей D от 10-10Г до SB 6,6-10Г см области оказывают возмущающее действие на температурный ход вязкости, т.е. фактическое значение вязкости в интервале 1453—1650 К выше, чем это следует из прямолинейного, хода 1п TJ - 1/Г. А при дальнейшем снижении D от я=6,6-10" до 3,310 см области упорядоченностей теряют структурную индивидуальность, аморфизируются и в дальнейшем не влияют на температурный ход вязкости. Критический размер аморфизации (6,5—6,0) 10" см близок к размеру одной элементарной решетки кристобалита 7,110г см. [c.168]


    Для углеродистых сталей характерно скачкообразное изменение ударной вязкости с понижением температуры. Можно выделить три зоны (рис. 6) зону / хрупких изломов при t < i-2, зону II рассеяния, где наб подаются и хрупкие и вязкие изломы (в зависимости от марки стали), и зону III вязких изломов ири t > Зоне рассеяния соответствует критический интервал температур < t < который характерен только для углеродистых сталей и лежит в пределах примерно от —10 до —30° С. Критической температурой хладноломкости для углеродистых сталей считают температуру ниже которой наблюдается хрупкий излом, а выше KOTopoi i — только вязкий излом. Следует отметить, что с уменьшением содержания углерода критическая температура несколько сннжаегся. В сильной степени на хладноломкость влияют примеси фосфора. [c.14]

    Уравнения (66) и (67) показывают, что критическая скорость нсеидоожижеиия возрастает с увеличением диаметра частиц, ка- /ьущейся плотности псевдоои ижаемого материала и первоначальной пористости слоя, а так-ке с уменьшением вязкости и плотности газа. [c.73]

    Критическая температура, ниже которой нарушается нормальная прокачиваемость масла в системе, зависит от вязкости масла при низких температурах. Уровень вязкости, при котором начинает нарушаться нормальная прокачиваемость, по опытным данным составляет около 5000 сст. При вязкости около 20 ООО сст подача масла в узлы трения двигателя полностью пре-кращ,ается. У товарных маловязких масел (с вязкостью при 50° С 7—8 сст) вязкость в 5000 сст достигается при температурах [c.171]

    Удельная вязкость N2 при 0° равна 1,66-10 пз. Вычислить диаметр сечения соударения N2 и сравнить с диаметром N2, вычисленным из следуюнцих данных а) объема, занимаемого твердым азотом в предположении гексагональной плотнейшей упаковки (при которой каждая частица пмеет 12 ближайших соседних частиц) б) постоянной Ван-дер-Ваальса Ь, которая в свою очередь вычисляется из критического объема газообразного азота, в) Вычислить коэффициент самодиффузии газообразного азота при НТР. [c.584]

    Из рис. 122 видно, что значение числа Вебера в большей степени зависит от скорости потока воздуха и первоначального диаметра капли, чем от вязкости масла МС-20. Так, для капли первоначального медианного диаметра м=270 мкм и скорости потока и=37,5 м/с (седла всасывающего и нагнетательного клапанов компрессора 5КГ 100/13) число Вебера колеблется от 27,2 при /= =60°С к v=96 сСт до 25,5 при повышении температуры масла до 180°С и снижении кинематической вязкости до v=6 сСт. При уменьшении скорости потока воздуха до ы=13,3 м/с (фонарь нагнетательного клапана компрессора 5КГ 100/13) значения чисел Вебера для капель масла МС-20 начального медианного диаметра от 90 до 270 мкм не достигают критического значения Ц7екр=5,35, при котором имеет место нестационарное дробление капель масла в воздушном потоке. [c.290]

    Если плотность разветвления превышает некоторую критическую величину ркр в системе возникают частицы надмолекулярных, а затем и макроскопических размеров, представляющие собой трехмерные пространственные структуры [2]. С точки зрения обычных молекулярных представлений их молекулярные массы и размеры можно назвать бесконечно большими. Образование таких структур проявляется в резком скачкообразном увеличении вязкости системы при полимеризации в массе и в появлении геля в 1астворах полимеров. [c.25]

    Введение некоторых количеств неорганических солей в водный раствор эмульгатора способствует снижению критической концентрации мицеллообразования (ККМ), повышению солюбилизации эмульгируемых мономеров, снижению поверхностного натяжения и повышению устойчивости образующегося латекса, улучшению его реологических свойств. В отсутствие электролитов образуется латекс, характеризующийся высокой вязкостью, вследствие чего нарушается нормальный отвод теплоты реакции полимеризации. В особенности высокую вязкость имеют латексы, полученные с применением жирнокислотного эмульгатора. В производстве бутадиен-стирольных каучуков применяются хлорид калия и тринат-рийфосфат (НазР04 12НгО), которые вводят в раствор эмульгатора совместно или в отдельности. Выбор указанных электролитов основан на отсутствии их влияния на скорость полимеризации и высаливание эмульгатора. [c.245]

    Для ньютоновской системы константа а=1, для неньютоновской (бингамовской) она отличается от единицы и тем больше, чем значительнее отклонение от простого вязкого течения. Таким образом, константа а может быть мерилом аномалии вязкости [9, 11]. Аномальность состоит в том, что течение структурированного тела начинается лишь тогда, когда напряжение ч двига превысит некоторое критическое значение, необходимое для разрушения структуры. После этого вязкость системы при-лимает постоянное значение сразу же или постепенно, как показано на рис. 4. [c.16]

    Можно предположить, что до перехода через критический рубеж дегидратации предкоагуляционные изменения в латексе обратимы. Для проверки этого предположения латексы после перемешивания в течение того или иного времени (но до наступления коагуляции) оставляли на хранение и измеряли их вязкость и ПБК под действием электролита. Как видно из рис. 11.7, ПБК латекса по мере хранения нарастает и практически возвращается к исходному значению. [c.199]

    Собственно для оценки топлива интереснее величина обратная вязкости, т. е. текучесть. Интересно, что согласно опытам американского адмиралтейства существует некоторая критическая вязкость, при которой все мазуты, независимо от их происхождения горят с одинаково высоким коэфициентом полезного действия. Эта критическая вязкость топлива лежит, естественно, для разных видов при разных температурах, однако, вполне характерных и постоянных для данного топлива. Если критическая вязкость получается только при высоких температурах, близких к таковым разложения й коюсо-образования, мазут, очевидно, не может быть применяем в качестве хорошего топлива, для которого критическая температура, вернее температура критической вязкости, лежит выше температуры вспьппки. Обыкновенно температура критической вязкости есть та, при которой вязкость равна приблизительно 8° Э (для йефти из [c.351]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    Остаточное сырье широкого фракционного состава содержит низкомолекулярные компоненты, которые в области температур, близких к критической, более растворимы в пропане, чем высокомолекулярные фракции. Растворяясь в пропане, низкомолеку-ляряые фракции действуют как промежуточный растворитель, повышая благодаря наличию в молекулах длинных парафиновых цепей дисперсионные силы молекул пропана, а следовательно, и его растворяющую способность по отношению к высокомолекулярным углеводородам и смолам. Это приводит к снижению глубины деасфальтизации, ухудшению селективности процесса и, как следствие, к повышению коксуемости и снижению вязкости деасфальтизата при одновременном увеличении его выхода. С углублением отбора дистиллятов при вакуумной перегонке мазута эффективность извлечения смолисто-асфальтеновых веществ из гудрона возрастает. Деасфальтизаты, полученные при переработке [c.70]

    От фракционного состава сырья при деасфальтизации пропаном зависит и температура образования двухфазной системы. С уменьшением вязкости сырья (рис. 13) возрастает температура образования второй фазы, приближаясь к критической температуре пропана, что делает деасфальтизацию такого сырья нецелесообразной [19, с. 56]. С увеличением глубины отбора низкоки-пящих фракций в гудроне увеличивается содержание смолистых веществ и высокомолекулярных углеводородов, что приводит к повышению его вязкости и коксуемости. В результате снижается температура образования второй фазы, однако уменьшается выход деасфальтизата (рис. 14). Слишком высокая концентрация сырья приводит к потере ценных высокомолекулярных углеводородов, которые обладают большей растворимостью в смолистых веществах, чем в пропане об этом свидетельствуют следующие данные [c.71]

    Информационная база системы. В отличие от других систем ASPEN оперирует с двумя типами компонентов, а именно с компонентами или псевдокомпонентами, характеризующимися общепринятыми свойствами чистых веществ (молекулярный вес, критические параметры, плотность, вязкость и т. д.), и с веществами, характеризующимися элементарным составом или обобщенными [c.420]

    Здесь Tr = Г/Гкр ст = T J -M4 -Pllp-, ц — вязкость Г ил, Гнр — температуры кипения и критическая соответственно, К М — молекулярный вес Ркр — критическое давление. [c.293]


Смотреть страницы где упоминается термин Вязкость критическая: [c.332]    [c.108]    [c.95]    [c.320]    [c.180]    [c.219]    [c.229]    [c.56]    [c.96]    [c.181]    [c.235]    [c.247]    [c.19]    [c.52]    [c.294]    [c.72]    [c.7]   
Расчеты основных процессов и аппаратов нефтепереработки (1979) -- [ c.46 , c.47 ]

Расчеты основных процессов и аппаратов нефтепереработки Изд.3 (1979) -- [ c.46 , c.47 ]




ПОИСК







© 2025 chem21.info Реклама на сайте