Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хладноломкость

    Выявленная закономерность позволяет оценить запас вязкости металла при низких температурах путем непосредственного сравнения с вязкостью его при комнатной температуре ( + 20 °С). На полученных кривых для некоторых металлов и сплавов отмечается порог хладноломкости — температурный интервал, в котором резко снижается ударная вязкость металла. Наиболее отчетливо порог хладноломкости выявляется для ферритных и мартенситных сталей. Ударная вязкость ряда металлических материалов понижается плавно, а для отдельных металлов (медь, алюминий) она сохраняет достаточно высокое значение вплоть до температур жидкого гелия (—270 °С). Следует учитывать, что на вязкость материала в значительной мере влияют такие факторы, как кристаллическая структура, термообработка, загрязнения, а также вид прилагаемой нагрузки. На рис. 44 показана зависимость ударной вязкости от температуры для некоторых металлов. [c.133]


    Важной характеристикой для определения хрупкого разрушения является ударная вязкость. Практическое значение имеет определение ударной вязкости, при отрицательных температурах, так как оно позволяет установить порог хладноломкости — температуру перехода металла от вязкого состояния к хрупкому. [c.178]

    Для обеспечения эксплуатационной надежности сосудов, работающих под давлением при отрицательных температурах, выбор материалов должен производиться с учетом их порога хладноломкости. Существующая методика определения этого показателя (Т 50) несовершенна, а значения ударной вязкости металла, получаемые при испытаниях, не могут служить критерием оценки его хладноломкости, [c.51]

    С понижением температуры для сталей предел прочности, предел текучести и модуль упругости возрастают относительное удлинение и относительное сужение уменьшаются незначительно, а ударная вязкость резко уменьшается. Явлению падения ударной вязкости (хладноломкости) подвержены как углеродистые, так и легированные стали. [c.14]

    Наиболее распространенным способом оценки склонности к хрупкому разрушению являются испытания серии образцов с V-образным надрезом на ударный изг иб при различных температурах (КСУ ). Критерий оценки - критическая температура перехода от вязкого к хрупкому разрушению или порог хладноломкости. Т р соответствует темературе достижения определенной минимальной ударной вязкости, например, равной 200 кДж/м Чем выше Г р, тем больше склонность метшша к хрупкому разрушению. Т р служит для сравнительной оценки материалов, отличающихся составом и структурой. Применительно к испытанию сварных соединений V-образный надрез наносится в исследуемой зоне соединения по оси сварного шва, зонам сплавления или термического влияния. [c.179]

    При температурах ниже О °С или небольшой положительной температуре металлы проявляют хладноломкость, которая характеризуется величиной удар- [c.174]

    На рис. 18 показано влияние температуры испытания иа ударную вязкость углеродистой стали обыкновенного качества различных марок (Ст.1—Ст.6). По мере повышения содержания углерода в стали порог хладноломкости смещается в сторону низких температур. Необходимо отметить, что при повышенных температурах на кривых ударная вязкость — температура , имеется вторая область пониженной вязкости. [c.31]


    Изменение ударной вязкости легированных сталей с понижением температуры происходит плавно (рис. 7). За критическую температуру хладноломкости легированных сталей принимают . - мпературу при которой величина ударной вязкости состав-ляе. 60% начального значения при нормальной температуре. [c.14]

    Примеси, обычно содержащиеся в меди (кислород, сера, висмут, свинец, железо), являются, как правило, вредными. Чем чище медь, тем лучшими механическими свойствами и более высокой коррозионной стойкостью она обладает. Особенно вредной является примесь кислорода, так как эта примесь способствует выделению закиси меди по границам зерен в виде эвтектики, которая является причиной хрупкости и хладноломкости меди при ее обработке в холодном состоянии. При взаимодействии с кислородом и другими окислителями медь не способна к пассивации и защитные пленки на ее поверхности не образуются. [c.246]

    Прочность стекла при понижении температуры увеличивается, а модуль упругости уменьшается. Хладноломкость стекла при низких температурах увеличивается при наличии на его поверхности трещин или абразивов. Механические свойства стекла при низких температурах могут быть улучшены путем обработки его поверхностного слоя под давлением [138]. [c.153]

    Кроме того, для образцов больших сечений порог хладноломкости соответствует более высокой темпера- [c.133]

    В области низких температур ударная вязкость сталей с наибольшим содержанием никеля уменьшается достаточно плавно. Однако для сталей с объемноцентрированной структурой кристаллической решетки (ферритные стали, содержащие железо-а) даже при содержании в них 8,5% никеля порог хладноломкости оценивается температурой всего лишь —195 °С. Поэтому как материалы для изготовления оборудования, предназначен-, ного для жидко водорода ( кип. = —253°С), они не представляют интереса [137]. [c.136]

    В условиях низких температур самое широкое применение нашли цветные металлы и сплавы, не подверженные хладноломкости. [c.21]

    Коррозионная стойкость сталей существенно снижается вследствие ряда факторов, к которым относятся усадочные раковины, ликвационная рыхлость (неравномерное распределение примесей по всему объему), красноломкость, хладноломкость, наклеп (поверхностное упрочнение металлов) и т. д. Интенсивность коррозии возрастает также под воздействием знакопеременных нагрузок (коррозионная усталость металла). [c.13]

    На качество стали сильно влияют содержащиеся в ней газы (кислород, водород, азот) и вредные примеси (сера, фосфор). Кислород, азот и водород снижают пластичность и способствуют хрупкому разрушению стали. Сера вызывает хрупкость стали при горячей обработке давлением [красноломкость). В стали сера находится в виде сульфидов FeS. Крайне нежелательная примесь — фосфор, который вызывает хладноломкость хрупкость стали при пониженных температурах. Стали обыкновенного качества содержат до 0,055% S и 0,045% Р, высококачественные стали содержат серы не более 0,015%, а фосфора — не более 0,025% масс. [c.624]

    Известно, что при сильном охлаждении многие металлы становятся хрупкими. Например, стальные и железные изделия, помещенные в жидкий воздух, делаются хрупкими, как стеклянные. Это явление называется хладноломкостью. Таким образом, ни пластичность, ни хрупкость не являются какими-то незыблемыми свойствами того или иного твердого материала. В зависимости от внешних условий, пре кде всего от температуры, пластичность большинства металлов может уступить место хрупкости. [c.222]

    Сера и фосфор — вредные технологические примеси. Сера вызывает в стали повышенную хрупкость в горячем состоянии — красноломкость, фосфор чрезвычайно понижает вязкость стали, особенно при отрицательных температурах, вызывая так называемую хладноломкость. Количество серы и фосфора в стали строго ограничивается. Однако в отдельных случаях, например, в автоматной стали, характеризующейся улучшенной обрабатываемостью, допускается повышенное количество серы и фосфора (до 0,2—0,3%). [c.12]

    Примеси к металлам могут быть полезными и вредными. Первые улучшают механические свойства металлов это —легирующие добавки. К их числу относятся такие металлы, как N1, Сг, Мо, V, Мп и др. Вредные примеси ухудшают качество металлов. Так, примесь фосфора вызывает хладноломкость металла (переход некоторых металлов и сплавов из пластичного в хрупкое состояние при понижении температуры), а примесь серы —красноломкость (приобретение хрупкости при температуре красного каления). [c.306]

    Такие испытания позволяют установить порог хладноломкости — температуру, соответствующую переходу металла от вязкого к хрупкому разрушению. [c.31]

    Естественно, что важное воздействие на ход кристаллизации а-Ре в стали оказывают не только углерод, но и другие примеси, как полезные, так и вредные. Часть вредных примесей (сера, фосфор и т. д.), понижающих качество стальных изделий, можно удалить введением легирующих добавок. Они связывают -вредные вещества и уводят их в Ш(лак или препятствуют кристаллизации примесных соединений на границе зерен кристаллов металлического железа и вследствие этого понижают прочность стали ( хладноломкость , красноломкость ). [c.117]


    Установлено, что механизм действия РЗЭ-металлов состоит в их модифицирующем влиянии па примесь сульфидной серы. РЗЭ-металлы связывают серу в оксисульфид и тем самым уводят серу с границ кристаллов железа внутрь зерна [6]. Это резко уменьшает хладноломкость стали и увеличивает продолжительность жизни стальных изделий в условиях Крайнего Севера. [c.117]

    В сталеплавильной печи содержание углерода, кремния и марганца нужно понизить до десятых долей процента. В стали должно остаться возможно меньще серы и фосфора сера вызывает красноломкость (образование трещин при горячей механической обработке), фосфор —хладноломкость (хрупкость стали при обыкновенной температуре). [c.174]

    Отрицательное влияние хрупкости при 475 °С может быть устранено нагревом при более высоких температурах. На рис. 8.8 представлено влияние температуры "закалки" на ударную вязкость и относительное уддинение образцов из стали 15X25, охрупченной после нагрева в течение 0,5 ч при 475 °С. В соответствии с этими данными нагрев при 750-760 °С практически полностью восстанавливает исходный уровень пластичности и вязкости стали. Более высокие температуры нагрева значительно менее эффективны, так как способствуют росту ферритного зерна, особенно заметно при 1000 °С. Хрупкость при 475 ° сменяется на хладноломкость при нормальной температуре вследствие формирования грубозернистой структуры. [c.245]

    Сталь МСт.З улучшенного раскисления также как и низколегированная сталь обладает меньшей склонностью к хладноломкости по сравнению с углеродистой сталью обыкновенного качества. [c.115]

    Для углеродистых сталей характерно скачкообразное изменение ударной вязкости с понижением температуры. Можно выделить три зоны (рис. 6) зону / хрупких изломов при t < i-2, зону II рассеяния, где наб подаются и хрупкие и вязкие изломы (в зависимости от марки стали), и зону III вязких изломов ири t > Зоне рассеяния соответствует критический интервал температур < t < который характерен только для углеродистых сталей и лежит в пределах примерно от —10 до —30° С. Критической температурой хладноломкости для углеродистых сталей считают температуру ниже которой наблюдается хрупкий излом, а выше KOTopoi i — только вязкий излом. Следует отметить, что с уменьшением содержания углерода критическая температура несколько сннжаегся. В сильной степени на хладноломкость влияют примеси фосфора. [c.14]

    С повышением температуры прочность стали 15X5 постепенно снижается, пластичность б, -ф падает в интервале 100—450 °С, а затем повышается. Порог хладноломкости ниже —25°С [5]. [c.191]

    N1 в количестве 9 - 12% обеспечивает аустенитную структуру с у1щкальным комплексом служебных свойств не имеет порога хладноломкости, ударная вязкость составляет 2,5 МДж/м в широком интервале минусовых температур. Используются в качестве коррозионностойких, жаросгсйких, жаропрочных и криогенных материалов в диапазоне температур 253 + 700 °С. [c.250]

    Ударная вязкость стали характеризует ее склонность к хрупкому разрушению. Путем испытания на удар при различных температурах находят порог хладноломкости, т. е. ту температуру, при которой сталь от вязкого разрушения переходит к хрупкому. Состояние хрупкого разрушения для некоторых углеродистых сталей может наступить уже при 0°С. В наибольшей степени хладноломкости стали способствует наличие в ней фосфора. Порог хладноломкости несколько понижается с уменьшением содер канпя углерода. [c.21]

    Кроме указанных механических характеристик, при выборе сталей для изготовления элементов аппаратуры, работающих при повыпюиных температурах, необходимо знать такие свойства, как ползучесть и длительная прочность материала, склонность к тепловой хрупкости, релаксации, чувствительность к старению, стабильность структуры, а для аппаратуры, работающей при пониженных температурах — склонность к хладноломкости. [c.5]

    С>и1женные газы при изоэнтальпическом снижении давления (дросселировании) охлаждаются до низких температур. Жидкая фаза, попадая на окружающие предметы, интенсивно испаригтся и охлаждает их (например, температура кипения пропана —42°С, бутана —0,6°С), при этом отрицательные тем-ператуэы газов не зависят от температуры окружающего воздуха. Низкие отрицательные температуры вызывают опасное воздействие на материалы металлы становятся хладноломкими (хрупкими) и могут разрушаться прн обычной механической нагрузке прокладки делаются ломкими н т. п. Поэтому при использовании сжиженных газов весьма важен выбор конструкционных материалов для оборудования и арматуры, в частно ти ограничивается применение чугунной арматуры. [c.253]

    Многие объекты эксплуатируют при повышенных температурах. С одной стороны, этот фактор способствует уменьшению вероятности возникновения хрупкого разрушения, поскольку обычно объекты эксплуатируются при рабочих температурах, значительно превышающих порох хладноломкости. С другой стороны, интенсивное тепловое воздейстъие может привести к развитию различных деградационных процессов в материалах, из которых изготовлена конструкция и, как следствие, - к их термическому повреждению. [c.26]

    Многие объекты эксплуатируются при повышенных температурах. С одной стороны, этот фактор способствует уменьшению вероятности возникновения хрупкого разрушения, поскольку обычно объекты эксплуатируются при рабочих температурах, значительно превьш1ающих порог хладноломкости. С другой стороны, интенсивное тепловое воздействие может привести к развитию различных деградашюнных процессов в материалах, из которых изготовлена конструкция и, как следствие, к их термическому повреждению. Влияние температурного фактора определяется не только значением рабочей температуры, но и характером и динамикой теплового воздействия. При нестационарном тепловом нагружении возможна термическая усталость материала конструкции. Динамические тепловые нагрузки могут быть обусловлены периодическим характером технологического процесса, изменениями рабочих параметров в период пусконаладочных и ремонтных работ, а так же вследствие неоднородного распределения температур по поверхности конструкции. Тепловые поля в той или иной степени нестащюнарны, их изменение приводит к соответствующему перераспределению упругих и пластических деформаций в объеме напряженного металла [17, 30]. [c.9]

    Большие перспективы открывает применение эффекта Мёссбауэра для исследования свойств специальных сталей, в состав которых всегда входит в той или иной концентрации железо. Такие исследования несут информацию о фазовых (структурных) превращениях в сталях, дают сведения, позволяющие исследовать прочность, износостойкость и так далее. Например, наблюденное в работе [21] аномальное поведение температурной зависимости величины внутреннего эффективного поля на ядрах Fe в интервале температур, совпадающем с температурой хладноломкости для сталей У9А и ст. 10, указывает на изменение характера химической связи при электронном фазовом переходе, который может быть первопричиной перехода стали из пластичного состояния в хрупкое. Исследование сверхтонкой структуры мессбауэровских спектров на ядрах Fe в сплаве Fe + 48,2 ат. % Ni и в чистом железе [22] позволило обнаружить отклонения величины относительных интенсивностей компонентов спектра для образцов, подвергнутых деформации от относительных интенсивностей компонентов спектра, полученного с недеформированного образца, что объясняется влиянием магнитной текстуры прокатки, вызванной кристаллографической текстурой прокатки и рекристаллизации. [c.217]

    Однако некоторые примеси ухудшают качество металлов и сплавов. Например, примеси серы вызывают красноло.мкость (хрупкость при температуре красного каления), а примеси фосфора—хладноломкость (хрупкость при пониженных температурах) металлов и сплавов. [c.268]

    Растворимость кислорода в твердом железе чрезвычайно мала. При кристаллизации стали кислород выделяется в составе различных окислов по границам зерен металла, ч о приводит к резкому ухудшению его свойств (например, хладноломкость). Поэтому одной из важных задач при выплавке стали является снижение концентрации растворенного в жидком металле кислорода, т. е. раскисление. Оно осуществляется путем добавки в стальную ванну элементов, отличающихся существенно большим сродством к кислороду, чем железо. Продуктами раскисления являются окислы, не растворимые в расплавленной стали и образующие неметаллические включения. Такие включе.чня в свою очередь должны быть по возможности полностью удалены из расплава, так как пх лрисутс1вие в готовом металле вредно. [c.289]


Смотреть страницы где упоминается термин Хладноломкость: [c.31]    [c.14]    [c.70]    [c.200]    [c.7]    [c.187]    [c.189]    [c.18]    [c.7]    [c.15]    [c.25]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.156 ]

Основы общей химической технологии (1963) -- [ c.170 ]

Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.263 ]

Общая химическая технология Том 2 (1959) -- [ c.147 ]

Техника низких температур (1962) -- [ c.9 , c.360 , c.361 ]




ПОИСК







© 2025 chem21.info Реклама на сайте