Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разветвленность плотность

    Плотность фракций зависит как от фракционного, так и химического состава топлив. Плотность повышается с увеличением температуры выкипания 50% фракций. Плотность углеводородов возрастает от парафиновых, нафтеновых к ароматическим. Среди парафиновых углеводородов высокую плотность имеют парафины разветвленного строения. [c.29]

    Эти различные свойства обусловлены различиями в построении молекул. Полиэтилен высокого давления состоит из молекул с разветвленной структурой — им труднее кристаллизоваться и плотность такого полиэтилена поэтому ниже (0,920—0,925 г/см кстати, его часто называют полиэтиленом низкой плотности). Полиэтилен низкого давления (высокой плотности) имеет линейно вытянутые упорядоченные молекулы, поэтому его плотность может достигать 0,97 г/см  [c.127]


    Сравнение свойств алкенов различного строения позволяет сделать заключение, что разветвленные алкены симметричного строения имеют значительно более высокую температуру кипения и плавления, а также более высокую плотность, чем остальные изомеры (см. табл. 9.3). [c.170]

    Помимо наличия функциональных групп, на клеящие свойства полимера значительное влияние оказывают величина молекулярного веса и структура молекулы. Степень зависимости адгезионных свойств полимера от его молекулярного веса имеет очень сложный характер. При увеличении молекулярного веса полимера повышается когезия, и обычно снижается адгезия, оптимальное сочетание величин адгезии и когезии находят экспериментальным путем. На клеящие свойства полимера значительное влияние оказывает молекулярная и надмолекулярная структура полимера, т. е. наличие разветвлений, плотность упаковки и другие факторы, поскольку они определяют физико-химические свойства полимера. [c.355]

    Плотность. При удлинении цепи алкильного остатка или при замене нормального радикала на разветвленный плотность эфиров уменьшается. Рост числа арильных групп сопровождается увеличением плотности (табл. 9) [48]. [c.34]

Рис. 39. Кинетические кривые окисления разветвленного (/, плотность 0,920 г/см ) и линейного (2, плотность Рис. 39. <a href="/info/791685">Кинетические кривые окисления</a> разветвленного (/, плотность 0,920 г/см ) и линейного (2, плотность
    Наиболее типичны для IV генотипа нефти, залегающие в баженовской свите на Салымской площади (скв. 78, 69, 92). Это легкие и средние по плотности нефти с высоким выходом бензиновых фракций. Кроме того, у нефтей IV генотипа имеются и другие специфические отличия, в частности самый низкий процент СНг-групп в цепях с тремя СНг-группами, СНз-групп изопропильных и в метильных разветвлениях, самый низкий коэффициент Pj (табл. 37). [c.99]

    Как правило, при одном и том же числе углеродных атомов в молекуле углеводороды с разветвленной цепью отличаются от углеводородов нормального строения более низкими плотностью, температурой застывания и температурой кипения. Парафиновые углеводороды с разветвленной цепью придают высокое качество бензинам, тогда как парафины нормального строения отрицательно влияют на поведение топлива в карбюраторных двигателях. Углеводороды парафинового ряда нормального строения являются желательными компонентами реактивного и дизельного топлив, смазочных масел, однако до определенных концентраций, при которых эти нефтепродукты удовлетворяют требованиям Государственных стандартов (ГОСТ) по низкотемпературным свойствам. [c.23]


    Количественной мерой разветвленности является плотность разветвления р, определяемая, как отношение числа разветвленных звеньев к их общему числу. [c.25]

    При реакциях передачи цепи плотность разветвления, естественно, определяется соотношением скоростей реакций разветвления и роста, в поликонденсационных процессах — долей полифункциональных звеньев. В связи с тем, что энергия активации реакций разветвления и, соответственно, температурный коэффициент их скорости, выше энергии активации роста цепи, разветвленность большого числа полимеров увеличивается с ростом температуры разветвленность также увеличивается с глубиной полимеризации, так как при этом возрастает вероятность взаимодействия активных центров с полимерными цепями. [c.25]

    Высокая плотность разветвления без образования трехмерных сеток может иметь место при реакциях передачи цепи на полимер с отрывом водорода. В этом случае, когда каждый акт разветвления приводит одновременно к образованию одной дополнительной ветви и обрыву одного растущего конца, критические условия геле-образования не могут быть достигнуты. Классическим примером такого процесса является процесс получения полиэтилена высокого давления. [c.26]

    Специфические сшитые структуры образуются в условиях, когда критическая плотность разветвлений достигается в объеме, по тем или иным причинам ограниченном коллоидными размерами. Например, при эмульсионной полимеризации образуются структуры, сшитые в пределах одной латексной частицы — микрогель. Такие образования могут иметь молекулярные массы порядка 10 —10 и значительную плотность сшивки (р 10 ). Микрогель особого строения образуется в некоторых случаях при полимеризации в растворах под действием гетерогенных катализаторов. Образование такого микрогеля связано, по-видимому, с сорбцией растущих или мертвых полимерных цепей на поверхности частиц катализатора с последующим химическим связыванием цепей вследствие катионной активности каталитической системы [18, 19]. [c.26]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    Программы для расчета технологических параметров трубопроводных систем моделируют рабочий процесс при заданных конструкционных параметрах. Гидравлический расчет проводится для разветвленных и неразветвленных трубопроводных систем с учетом местных сопротивлений и изменения теплофизических свойств перекачиваемых продуктов. Результатом расчета является изменение по участкам давления, плотности и скорости продукта, кавитационный запас (для жидкости). [c.573]

    Полиэтилен низкой плотности существенно отличается по своим свойствам от полиэтилена, полученного на катализаторе Циглера он имеет более низкие плотность и температуру плавления. Было высказано предположение, что это связано с разветвленностью цепей продукта, синтезированного при высоком давлении. Объяснить, каким образом в процессе полимеризации могут образовываться разветвленные макромолекулы и какое они могут оказать влияние на плотность, и растворимость полимера  [c.285]

    Плотность дистиллята от коксования гудрона по мере повышения температуры в кубе также непрерывно возрастает. По-видимому, процессу распада молекул сырья на более мелкие осколки в случае гудронов предшествует (при 365—385 °С) процесс деполимеризации высокополимерных сильно разветвленных естественных углеводородных комплексов нефтей с длинными алифатическими цепями на комплексы меньших молекулярных размеров. Этот процесс сходен с деполимеризацией керогена горючих сланцев и органической массы каменного угля, которая предшествует их деструктивному разложению при нагревании [5, 228, 229]. [c.56]

    Полиэтилен, получаемый этими методами, различается по свойствам и способности перерабатываться в изделия. Это объясняется особенностями строения полимерной цепи — степенью разветвлен-ности и длиной макромолекул полимера. Так, макромолекулы полиэтилена, получаемого методом высокого давления, имеют более разветвленное строение, что обусловливает его более низкую степень кристалличности и соответственно более низкую плотность по сравнению с полиэтиленом низкого и среднего давления. [c.5]


    Разветвленные алкены симметричного строения имеют значительно более высокие температуры кипения, температуры плавления н плотности, чем остальные изомеры. Так например  [c.79]

    Влияние разветвления углеводородного скелета на плотность сераорганических соединений, как и в случае алканов, довольно сложно. Не вдаваясь в детали этого вопроса, мы, однако, можем отметить, что алифатические сульфиды со вторичным алкильным радикалом имеют заметно более низкую плотность (коэффициенты преломления), чем их аналоги нормального строения, тогда как наличие в структуре сульфида третичного радикала оказывает противоположное влияние на величины рассматриваемых физикохимических характеристик. [c.154]

    Сажа представляет собой высокодисперсный продукт черного цвета, получаемый при высокотемпературном (1200—2000 °С) разложении углеводородов. Основными элементами сажи являются углерод (90—99%), водород (0,3—0,5%) и кислород (0,1—7%), содержание которых колеблется в зависимости от состава сырья и технологии производства. В саже может содержаться также до 1,5% серы и до 0,5% золы. Размер частиц сажи составляет от нескольких сотен до нескольких тысяч ангстрем. Из частиц сажи формируются агрегаты (плотные образования множества частиц) и агломераты (рыхлые цепные образования разветвленной структуры). Линейные размеры агломератов сажи могут достигать нескольких микрон (обычно 0,2—0,8 мкм). По строению агломератов и плотности упаковки в них частиц судят о структурности сажи. В производственных условиях ее оценивают по маслоемко-сти — масляному числу (чем оно больше, тем выше структурность, [c.395]

    Зная величину плотности ветвления к и среднюю молекулярную массу полимера, а также предполагая, что распределение ветвлений носит статистический характер, можно рассчитать долю разветвленных макромолекул, образовавщихся в результате синтеза. [c.230]

    Учитывая также, что плотность ветвлений представляет собой число боковых цепей, приходящееся на макромолекулу, разделив к на число макроцепей, можно рассчитать количество разветвленных макромолекул. [c.230]

    Для нефтей IV ("триасового") генотипа характерно снижение роли длинных цепей. Типичны для триасовых отложений нефти с коэффициентом Ц 2,45—4,12. Это в основном нефти средней плотности. Их особенностью является низкое содержание как бензиновых фракций, так и смолисто-асфальтеновых компонентов. Среднее число колец в молекуле парафино-нафтеновой фракции выше, чем в описанных ранее нефтях, а в нафтено-ароматической фракции — ниже. Данные ИКС показывают, что в парафино-нафтеновой фракции значительно возрос процент нафтеновых циклов. Для парафиновых структур характерно резкое (в 3 раза) увеличение содержания СНг-групп по сравнению с СНз-группами и уменьшение роли СНз-групп в гемдиметильном положении, что указывает на снижение степени разветвленности парафиновых структур. Для нефтей "триасового" генотипа характерно самое низкое содержание малоциклических ароматических УВ (около 25 %) за счет главным образом небольшого процента нафталиновых и фенантреновых ядер, сумма которых меньше содержания бензольных ядер. Это— главная отличительная особенность нефтей "триасового" генотипа (более 56 % фракций малоциклических аренов составляют бензольные ядра). Полициклические ароматические УВ не обнаружены. Присутствуют лишь следы как ванадиевых, так и никелевых порфиринов. Нефти "триасового" генотипа встречены в триасовых отложениях в районе Джамбейтинско-Хобдинской зоны прогибания, выделяются также по параметру Ц в юрских отложениях на всех [c.71]

    Уменьшение плотности конденсатов, возрастание в них содержания наиболее миграционноспособных УВ (метана) и снижение количества ароматических УВ с параллельным уменьшением их цикличности связано, по-видимому, с определенными фильтрационными процессами, при которых конденсаты, прошедшие наибольшее расстояние при миграции, имеют меньшую плотность по сравнению с теми, залежи которых расположены вблизи этой области [11]. Увеличение цикличности парафино-нафтеновой фракции при фильтрации, на первый взгляд, не должно происходить, однако следует учесть, что в этой фракции, лишь треть молекулы связана с кольцами, т. е. очень мало нафтеновых колец и много разветвленных цепей и, по-видимому, не исключена возможность потерь нафтеновых колец с большим количеством боковых цепей, за счет чего и наблюдается относительное и очень небольшое увеличение числа нафтеновых циклов. [c.114]

    Уотерман и Линдертсе 1(31] в 1У38 г. нашли, что удельный парахор, представляющий собой функцию молекулярного веса, поверхностного натяжения и плотности, зависят от степени разветвления. Применение этого параметра, однако, ограничивается чистыми углеводородами и сравнительно простыми смесями. [c.372]

    Другие жтоды, включатцие определение степени разветвления. В 1952 г. Роберт [34], пытаясь исключить определение молекулярного веса, установил линейное соотношение между процентным содержанием углерода в ароматической структуре (% Сд), коэффициентом преломления п , плотностью d и анилиновой точкой АР. Это соотношение имеет вид  [c.385]

    Расплавленный парафин можно хлорировать хлором непосредственно или же в растворителе, при этом получаются хлорированные углеводороды, содержащие 28—70% хлора. В зависимости от содержания хлора конспстепция продуктов изменяется от вязких масел до легкоплавких твердых веществ. Плотность и вязкость их повышаются с увеличением содержания хлора. Мягкие парафины или микрокристаллические воски, содержащие разветвленные цепи, склонны давать нестабильные продукты хлорирования. Маслообразные продукты, содержащие 40% хлора, используются как растворители, пластификаторы, а также как присадки к смазочным маслам и краскам, устойчивым к коррозии. Парафины более высокой степени хлорирования — обычно твердые и более стабильные вещества. Они используются для противопожарных покрытий и для защиты от воздействия воды и атмосферных факторов. Хлорированные твердые парафины сравнительно нелетучи, не обладают запахом, безвкусны, не являются раздражителями, нетоксичны и при средней и высокой степени хлорирования (содержании хлора 40—70%) негорючи. [c.58]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Поскольку последний пример является примером несимметричного разветвленного высокомолекулярного алифатического углеводорода, то следует указать также па полимеры, полученные Котманом [8] восстановлением поливиниловых хлоридов. Эти полимеры по некоторым физическим свойствам подобны полиэтилену. Их инфракрасные спектры качественно напоминают таковые полиэтилена. Однако количественное определение показывает, что соотношение метильных групп к метиленным составляет здесь лишь величину порядка 1 100. Эта величина значительно меньше, чем соотношения, наблюдавшиеся у большинства полиэтиленов, и свидетельствует о том, что поливинилхлорид несколько более разветвлен, чем большинство полиэтиленов. Плотности этих продуктов в литературе не приводятся. [c.170]

    Молекулярный объем определяется как молекулярный вес, деленный на плотность он пропорционален объему, занятому одной молекулой веществ. Допуская облагораживающую природу для атомных превращений, различные исследователи предложили формулу для вычисления молекулярного веса чистых углеводородов. Эти соотношения очень стары, но были распространены еще недавно (Конп, 1842) [125—126]. Просто говоря, нормальные парафины обладают самыми большими молекулярными объемами. Разветвление углеродной цени уменьшало значение очень незначительно, двойные связи заметно, а кольцо — до количества, почти эквивалентного трем двойным связям. Молекулярный объем удобен при установлении зависимостей между химическим составом и физическими свойствами. Эта идея не нова, но вновь за последнее время к ней был проявлен интерес. [c.182]

    Если плотность разветвления превышает некоторую критическую величину ркр в системе возникают частицы надмолекулярных, а затем и макроскопических размеров, представляющие собой трехмерные пространственные структуры [2]. С точки зрения обычных молекулярных представлений их молекулярные массы и размеры можно назвать бесконечно большими. Образование таких структур проявляется в резком скачкообразном увеличении вязкости системы при полимеризации в массе и в появлении геля в 1астворах полимеров. [c.25]

    Характерным отличием жидких тиоколов является способность превращаться в резины при комнатной температуре за счет реакций концевых меркаптанных групп. В связи с этим наиболее важной характеристикой тиоколов является содержание 5Н-групп и среднечисленная функциональность, показывающая среднее число меркаптанных групп, приходящихся на молекулу полимера. Функциональность полимера может быть рассчитана по количеству примененного 1,2,3-трихлорпропана. Последний полностью входит в состав жидкого полимера, что было доказано методом радиолиза с применением меченого по углероду 1,2,3-трихлорпропана [23]. Функциональность полимеров зависит от количества 1,2,3-трихлорпропана и от молекулярной массы полимера (см. табл. 1). Плотность разветвленности, вычисленная по среднему числу узлов разветвления, определяется только количеством примененного сшивающего агента и не зависит от молекулярной массы полимера. [c.559]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    Дня формирования высококачественного волокнистого кокса чрезвычайно важно добиться, чтобы элементы дисперсной фазы на нижних масштабных уровнях имели умеренно разветвленную структуру парамагнитного каркаса, которая позволила бы захватить часть более легких компонентов и сохранить пластические свойства, необходимые для диффузионных процессов графитации при прокалке кокса. На верхних масштабных уровнях плотность ядер элементов дисперсной фазы должна быть максимальтюй для общего снижения концентрации летучих в коксе. [c.24]

    Распределение боковых цепей в полимерах различной молекулярной массы частично зависит от условий полимеризации, и, возможно, от вида а-олефина, используемого в качестве со-мономера, но степень разветвленности всегда выше во фракциях с более низкой молекулярной массой. Это иллюстрирует рис. 6, на котором показана зависимость концептрацпп боковых цепей от среднемассовой молекулярной массы (М ) фракций, полученных при колоночном фракционпроваппи сополимера этилена и гексена-1 с индексом расплава 0,2 и плотностью 0,94 [52]. Вторая кривая рис. 6 характеризует зависимость молекулярной массы каждой фракции от массового процента полимера, накопленного к средней точке каждой фракции. Обратная зави- [c.178]

    В соответствии с этим авторы считают, что при термической диффузии разделяемые углеводороды располагаются в следующей последовательности (от верха к низу колонки) легкие нормальные алканы, тяжелые нормальные алканы, разветвленные алканы, моноциклические, а затем бициклические углеводороды. Таким образом, Крамере и Броуде считают определяющим фактором термической диффузии не молекулярный вес, а плотность молте-кул и их молекулярный объем. Правильность этого заключения подтверждена была многочисленными работами [25, 29, 30, 3 3, 34]. [c.331]

    Зависимость вязкости от давления более сильна для жидкостей с большой начальной зязкостыо и для жидкостей с более разветвленными молекулами. Другая часть зависимости связана с плотностью жидкости и зависимостью последней от давления, т. е. со сжимаемостью жидкости. В 130] приведено такое соотношение [c.161]

    Мормальиые углеводороды, молекулы которых лучще упаковываются в жидкой фазе, обладают нанвысшими температурами кипения и наибольшей плотностью, а наиболее разветвленные — самыми низшими значениями температуры кипения и плотности (табл. 6.10). [c.113]

    Возможно иное объяснение изменения активности радикалов. Согласно Семенову [761, последнее может быть связано с взаимодействием электрона свободной валентности с электронами близлежащих о-связей С—С и С—Н. Это приводит к изменениям формы радикалов и сравнительно небольшим изменениям электронной плотности вследствие наложения и взаимодействия электронных облаков свободного электрона и электронов о-связей. Именно такой тип взаимодействия обусловливает уменьшение активности алкильных радикалов njjH переходе от - СНз к -С Н (после чего это взаимодействие стабилизируется и активность более сложных радикалов не изменяется) и увеличение разветвленности углеродного скелета. [c.101]

    Для рассматриваемого нами вопроса весьма важное значение имеет присутствие в нефтях алканов с высокой температурой плавления, которая повышается с ростом их молекулярной массы. Начиная с гексадекана () и выше в обычных температурах нормальные алканы являются твердыми веществами, которые в зависимости от температуры и их концентрации могут находиться в нефти в растворенном или кристаллическом состоянии, При равной молекулярной массе разветвленные алканы характеризуются более низкими температурами плавления. Разница достигает весьма заметных величин так, температура плавления додекана равна -9,6 С, тогда как у 2-метилундекана и 5-метилундекана составляет -46,0" С и -75,0°С соответственно. При темпепатурах выше 40 °С все алканы в нефтях находятся в растворенном состоянии. Алканы в твердом состоянии обладают большей плотностью в пределах 865,0-940,0 г/см , тогда как у расплавленных 777,0-790,0 г/см /3/. Содержание так называемых твердых парафинов в нефтях нашей страны колеблется от следов (Марковская) до 26,0% (Каспийская). [c.11]


Смотреть страницы где упоминается термин Разветвленность плотность: [c.71]    [c.72]    [c.43]    [c.455]    [c.50]    [c.23]    [c.604]    [c.230]    [c.80]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.477 ]




ПОИСК





Смотрите так же термины и статьи:

Разветвление

Разветвленность



© 2024 chem21.info Реклама на сайте