Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители дисперсность и физические свойства

    При выборе носителя следует учитывать 1) химический состав и степень дисперсности носителя 2) физические свойства поверхности 3) количество и концентрацию активных веществ, которые, могут быть распределены на поверхности 4) активную поверхность носителя и величину отношения количества атомов катализатора к числу атомов носителя [22]. [c.63]


    ДИСПЕРСНОСТЬ и ФИЗИЧЕСКИЕ СВОЙСТВА НОСИТЕЛЯ [c.475]

    Наконец, в дисперсном катализаторе на поверхности раздела небольших металлических частиц и носителя могут находиться специфические центры каталитической активности. Если взаимодействие металл—носитель имеет чисто физический характер, разумно считать, что атомы металла, соприкасающиеся с носителем, почти не изменяются и специфические центры на поверхности раздела не возникают. Однако при химическом взаимодействии атомы металла на поверхности раздела могут химически измениться и приобрести иные каталитические свойства. Тем не менее даже в указанных условиях концентрация таких атомов, особенно атомов, доступных для газообразных реактантов, весьма мала. Поскольку надежные данные о такого рода взаимодействии отсутствуют, следует полагать, что в обычных тщательно восстановленных дисперсных катализаторах, содержащих благородные металлы, поверхность раздела также должна соответствовать восстановленному состоянию и взаимодействие металл—носитель в основном носит физический характер. [c.285]

    В проведенных экспериментах использовались газы, свободные от ядов, и наблюдаемые эффекты являются результатом исключительно только термического спекания. Это" объясняет, почему катализаторы совершенно одинакового состава могут иметь различную термическую стабильность. Следовательно, потенциальная продолжительность пробега сильно зависит от стабилизирующего вещества, имеющего субмикроскопическую дисперсность, близкую к дисперсности активного каталитического материала причем сам стабилизатор должен быть стабильным в условиях реакции (гл. 2, рис. 5 и 6). Свойства носителя и метод образования композиции также влияют на физические свойства катализатора. Пример из гл. 2 (рис. 1) показывает, что специальное требование сверхвысокой активности может влиять на длительность пробега и прочность, приводя к необходимости некоторого компромисса. Катализатор 52-1 был разработан с целью увеличения стабильности, поскольку с практический точки зрения продолжительный пробег важнее, чем очень высокая начальная активность. Активность определяется большой удельной поверхностью и соответствующим объемом пор. На прочность влияют гидродинамические свойства среды (гл. 2). Продолжительность пробега, зависящая от стабильности структуры, в большей степени связана со способом соединения компонентов, нежели с изменениями состава ингредиентов. Катализатор 52-1 состоит из- 30% uO, 45% ZnO и 13% AI2O3. Он имеет удельную поверхность 60 м 1г и объем пор 0,4 см /г. [c.134]


    Прп выборе носителей необходимо учитывать их природу и свойства, а также избирательное действие. Кроме структурной характеристики (аморфность, кристалличность, компактность поверхности), должны учитываться и следующие особенности носителей 1) химический состав и степень дисперсности 2) физические свойства поверхности (пористость, адсорбционные качества, электрические свойства, механическая прочность) 3) количество и концентрация катализатора, которые могут быть получены на носителе (толид,ииа нанесения, поглотительная емкость) 4) активная поверхность носителя и величина отношения [c.83]

    При нанесении небольшого количества благородных металлов на подложку наблюдается изменение их электронной структуры. Так, электронная конфигурация атомов платины, нанесенных на 7-А12О3, характеризуется меньшей долей d-и большей долей х-электронов [25]. Такйя же закономе1Жость наблюдается при нанесении платины и на другие носители (8Ю2, уголь). Тенденция к проникновению ( -электронов в 5-оболочку характерна для дисперсного состояния Р1 как такового независимо от физических свойств носителя. Наличие 6 1/2-состояния стабилизирует в кластерах платины частично освобождающееся 5 5/2-состояние, причем потенциал ионизации 6 1/2-электронов также возрастает одновременно увеличивается и сродство к электрону. При этом 6 1/2-состояния в кластерах Р1 могут конкурировать с 5 1 у 2-состояниями при образовании связей с реагентами. Этому способствует большая доступность б51у2-орбитал й и большая степень их перекрывания с орбиталями лигандов. Сферическая симметрия этой орбитали, специфика ее пространственного расположения и энергетические характеристики благоприятствуют взаимодействию атомов нанесенной платины с молекулами газовой фазы. [c.36]

    Дегидрогенизация шестичленных циклоалканов изучалась Зелинским, как известно (см. гл. III), не только на катализаторах— благородных металлах, но и на никеле, отложенном на разных носителях, в том числе на окиси алюминия. Никелевые катализаторы в дальнейшем изучались Рубинштейном, Шуйкиным, Новиковым и другими [49—52]. Причем Рубинштейн показал, что активность катализаторов зависит не только от их химической природы, но и от их физической структуры (от деформации и фазового состояния кристаллической решетки, от дисперсности). На этой основе Рубинштейн [53] объяснил различную активность одного и того же катализатора в реакциях гидрогенизации, где требуется активация прежде всего молекулярного водорода, и в реакциях дегидрогенизации, где требуется соответствующая активация органической молекулы. Рубинштейн, Фрейдлин и Бо-рунова [54] нашли, что при приготовлении никель-глиноземных катализаторов возможны случаи образования аморфного никеля, который из-за отсутствия структурного соответствия между катализатором и реагирующей молекулой лишается каталитических свойств и не вызывает дегидрогенизации циклот-ексана. [c.226]

    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]


    Вопрос о соотношении между каталитической активностью и степенью дисперсности активного компонента является одним из центральных вопросов гетерогенного катализа. В применении к металлическим катализаторам на носителях решение этой проблемы требует ответа на следующие вопросы зависит ли каталитическая активность от размера частиц нанесенного металла является ли необходимым условием его каталитического действия наличие сформированной кристаллической решетки, обладающей свойствами массивного металла, и, наконец, существует ли оптимальный размер кристаллитов, обеспечивающий максимальную каталитическую активность. Еще в 30-х годах Данков и Кочетков (149] при изучении разложения Н2О2 и гидрирования этилена на платине обнаружили максимум активности при размерах кристаллов 40—50 А и быстрый спад до нулевой активности при диаметре 20 А. Оптимум дисперсности никеля на А1г0з при дегидрировании спирта обнаружил Рубинштейн [150] в обла-, сти 60—80 А. Как недавно отметил Бонд [151], проблема нанесенных металлических катализаторов долгое время оставалась незаслуженно забытой и только в последние годы тщательное исследование удельной каталитической активности, отнесенной к 1 поверхности металла, в сочетании с различными физическими методами определения дисперсности металла (электронная микроскопия, рентгеновское уширение линий, магнитный метод, хемосорбция Н2 и СО и др.) приблизило нас к более глубокому пониманию поставленных вопросов. Тем не менее и сегодня они остаются дискуссионными. [c.51]


Смотреть страницы где упоминается термин Носители дисперсность и физические свойства: [c.446]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.475 ]




ПОИСК







© 2025 chem21.info Реклама на сайте