Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винильные полимеры типы присоединения

    Большинство винильных полимеров образованы в основном присоединением типа голова к хвосту чередование присоединений различного типа приводит к потере регулярности, что, в свою очередь, находит отражение в уменьшении степени кристалличности и, таким образом, оказывает влияние на механические свойства материала. [c.14]


    Винильная полимеризация таких мономеров, как H2= RR (где R = R, R t H), обычно протекает по типу присоединения голова к хвосту и приводит к образованию структурно регулярных полимеров, содержащих последовательности типа (—СНг— RR — —СНг— RR —). Группу RR называют голова, а группу СНг — хвост. Полимеры содержат структуры голова к голове- (—СНг— RR — RR — Hj—) и хвост к хвосту — RR —СНг— —СНг— RR —) (иногда называемые синсефалическими последовательностями). [c.13]

    Более сложной является проблема стерической изомерии и сте-реорегулярности. Рассмотрим простейший тип винильного полимера, в котором замещающая группа X присоединена к каждому второму углеродному атому мономерного звена. Для простоты иллюстрации предположим, что полимерная цепь является плоским зигзагом. Тогда возможны два типа очень простых регулярных полимеров. В первом из них заместитель присоединен в одном и том же положении вдоль всей цепи  [c.14]

    Бутадиен-1,3 может легко нолимеризоваться при довольно низких температурах (15—32° С) в процессе эмульсионной полимеризации в присутствии эмульгаторов (мыла), активаторов полимеризации и модификаторов. Таким путем могут быть получены разнообразные продукты, используемые как специальные типы синтетических каучуков и пластмасс. Исследована возможность их применения для производства автомобильных шин. Свойства полимерного продукта зависят не только от его молекулярного веса но также и от соотношения между присутствующими в нем цис-и п/гамс-полимерами, возникающими в результате присоединения в положении-1,4 или в зависимости от положения винильной группы при присоединении в положении-1,2 [c.116]

    Для несимметричных винильных мономеров свободные энергии активации образования изотактич. (см. Изотактические полимеры) и синдиотактич. носледовательности звеньев пе равны вследствие различного невалентного взаимодействия боковых заместителей молекулы мономера и боковых заместителей мономерных звеньев конца растущей цени свободная энергия активации присоединения в смиймо-положение обычно оказывается ниже. Такое различие в большинстве случаев определяется неравенством теплот активации для обоих типов присоединения поэтому при понижении темп-ры полимеризации в полимере возрастает доля синдиотактич. звеньев в соответствии с ф-лой  [c.438]

    Общие выводы, которые можно предварительно сделать на основе ограниченного числа данных, доступных в настоящее время при свободнорадикальной полимеризации .а -дизамещенных мономеров (фактически единственным хорошо изученным мономером этого типа является метилметакрилат) для т-присоединения требуется энтальпия активации на 1 ккал/моль большая, чем для г-присоединения, но т-присоединение несколько предпочтительнее по энтропийному фактору. Для а-монозамещенных мономеров обычно предпочтительнее /--присоединение по величине изменения как энтропии [Д(Д5 ), однако, мало или равно нулю, если заместитель СМ- или ОАс-группа], так и энтальпии, хотя разность A AHf) не превышает 300 кал/моль и часто близка к пулю. Сольватация свободного радикала не имеет большого значения, поскольку конфигурация цепи, видимо, не зависит от выбора растворителя при полимеризации. (Возможно, однако, что существенное влияние может оказывать сильная водородная связь между мономером и растворителем, но экспериментально это не исследовалось). Короче говоря, единственной возможностью по вли-ять на конфигурацию при свободнорадикальной полимеризации винильных мономеров, доступной для экспериментатора, является изменение температуры. Однако даже в благоприятных случаях температура полимеризации слабо влияет на конфигурацию образующегося полимера. [c.164]


    Реакции гомополимеризации а-олефинов и винильных мономеров протекают с образованием полимеров, на 97— 100% построенных по принципу голова—хвост , вследствие термодинамической выгодности соответствующих актов роста. Однако в процессе сополимеризации, например, этилена с пропиленом [335] или а-амиленом [424], по-видимому, возникают условия, благоприятные для нарушения регулярности цепи и сочленения звеньев по принципу голова к голове . В этом случае обычные константы относительной активности мономеров оказываются зависимыми от состава мономерной смеси [425]. Количество аномальных присоединений в сополимерах, полученных на системе VAAg—Al (изо-С4Нд)2С1, составляет около 20% по отношению к этилену в сополимере эквимоляр-ного состава. Присоединения такого типа обнаружены и в сополимерах, полученных на других ванадийсодержащих каталитических системах. Анол1альные присоединения, наличие разветвленности и конверсионная полимеризация увеличивают композиционную неоднородность сополимеров, что положительным образом сказывается на их эластомерных свойствах. [c.81]

    Синтетич. полимеры изопрена так же, как и натуральный каучук, легко реагируют с НС1, а полимеры бутадиена, сополимеры бутадиена со стиролом и нитрилом акриловой к-ты присоединяют НС1 в более жестких условиях. Реакцию проводят в смеси диоксана и толуола, насыщенной хлористым водородом при —10° и нагретой под давлением до 70—100°. Присоединенный хлор менее реакционноспособен, чем в гидрохлориде натурального каучука. Количество присоединенного хлора, кроме типа каучука, определяется также растворителем, в к-ром происходило гидрохлорирование. Теоретич. содержание хлора в полностью гидрохлорированном натуральном каучуке составляет 33,97%, что отвечает формуле (GsHs l) ., а в эмульсионном полиизопрене 28,14%, или 83% от теоретически возможного, что обусловлено наличием в полимере боковых винильных групп в положении 1—2. Полиизопрен, полимеризованный в присутствии металлич. натрия, присоединяет 63% [c.250]

    Основная сложность заключается в синтезе привитых сополимеров так как известно [165, 166], что полимеризация акролеина может протекать как по винильной и альдегидной группам, так и по механизму 1,4-присоединения, в результате чего в получаемом полимере содержатся различные звенья (альдегидные группы, двойные связи и т. д.). Наличие в макромолекуле полимера звеньев того или иного типа в большей степени зависит от условий проведения реакции полнме)ризации. Для получения на основе привитых сополимеров огнестойких материалов необходимо введение в боковые цепи альдегидных групп. В условиях привитой сополимеризации, осуществляемой с использованием окислительнонвосстановительной системы Ре + —Н2О2 [167], акролеин полимеризуется в основном по винильным группам, что позволяет ввести в полиамид значительное количество альдегидных групп. В рабо- [c.387]

    Предложенная интерпретация некоторых из известных зависимостей микроструктуры полимера от типа реагирующих веществ, реакционной среды и условий проведения процесса основывается на данных, относящихся к мономерам, для которых установлена возможность стереоснецифической полимеризации. Интересен вопрос о причинах неудач при попытках синтеза стереорегулярных полимеров во многих других случаях. Ограниченный объем экспериментальных данных не позволяет пока сформулировать по этому поводу общую гипотезу. Известные из литературы соображения имеют частный характер. Например, по Натта [26], образование полимеров с повышенной регулярностью при анионной полимеризации 2-винилпиридина по сравнению с 3- и 4-вп-нилпиридином следует приписать бидентатному характеру промежуточных комплексов (6, HI). Расстояния между донорными позициями мономера (N-атомом и винильной группой) позволяют допустить образование подобного комплекса (6, III) только для 2-винилпиридина. Представление о возможности изотактического присоединения в анионных системах только у полярных мономеров, способных к образованию бидентатных комплексов с противоионом, согласуется с некоторыми другими фактами. Оно может быть привлечена для объяснения различий в поведении двух наиболее хорошо изученных мономеров — метилметакрилата и акрилонитрила, только первый из которых образует в анионных системах изотактические полимеры. Отсутствие избирательности в реакции роста у акрилонитрила согласуется с его неспособностью к образованию бидентатных комплексов с противоионами, обеспечивающими синтез изотактического метилметакрилата (Li, Mg) это следует из геометрии молекулы акрилонитрила (см. гл. 1, стр, 35). С другой стороны, метакрилонитрил, не отличающийся в этом отношении от акрилонитрила, способен к образованию изотактических полимеров при анионном инициировании [27]. Следовательно, определяющими для стереохимии реакции роста могут быть и другие факторы. Различие в поведении этих двух мономеров тем более интересно, что акриловые и метакриловые эфиры сравнительно мало отличаются друг от друга по склонности к изотактическому присоединению. В частности, полиметилакрилат, полученный под действием литийбутила, принадлежит к числу полимеров с высокой стерео-регулярностью. В отличие от пары акрилонитрил-метакрило-нитрил здесь 2-метилпроизводное не имеет никаких преимуществ перед незамещенным мономером (табл. 83). [c.253]



Смотреть страницы где упоминается термин Винильные полимеры типы присоединения: [c.113]    [c.42]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.65 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Типы полимеров



© 2025 chem21.info Реклама на сайте