Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графитированная сажа

Рис. XVI, 1. Изотермы адсорбции на поверхности графитированной сажи в области невысоких заполнений 6 поверхности и небольших равновесных давлений р в газовой фазе Рис. XVI, 1. <a href="/info/3644">Изотермы адсорбции</a> на поверхности графитированной сажи в области невысоких заполнений 6 поверхности и небольших <a href="/info/317333">равновесных давлений</a> р в <a href="/info/56269">газовой</a> фазе

Рис. XVI, 2. Зависимость коэффициентов активности бензола (/) и четыреххлористого углерода (2) от степени заполнения поверхности графитированной сажи. Рис. XVI, 2. <a href="/info/602516">Зависимость коэффициентов активности</a> бензола (/) и <a href="/info/1356">четыреххлористого углерода</a> (2) от <a href="/info/4503">степени заполнения поверхности</a> графитированной сажи.
    Константы равновесия Ка или Кх не зависят от концентрации. Их числовые значения могут быть определены из начальной части изотермы адсорбции на однородной поверхности (область Генри) по уравнениям (XVI, 26) или (XVI, За). Отношения же р/а или р/а при разных давлениях должны быть определены из экспериментальной изотермы адсорбции в широком интервале значений р. На рис. XVI, 2 показаны зависимости от б для бензола и четыреххлористого углерода на поверхности графитированной сажи, полученные из изотерм адсорбции, приведенных на рис. XVI, 1. [c.443]

    Таким образом, вначале адсорбция растет пропорционально концентрации или давлению газа, но постепенно этот рост замедляется, и при достаточно высоких концентрациях газа наступает насыщение поверхности мономолекулярным слоем адсорбата. Этой форме изотермы близка изотерма адсорбции бензола на поверхности графитированной сажи, представленная на рис. XVI, 1. [c.446]

Рис. XVI, 4. Изотерма адсорбции бензола на поверхности графитированной сажи (см. рис. XVI, 1) в координатах линейной формы уравнения Лэнгмюра. Рис. XVI, 4. <a href="/info/143007">Изотерма адсорбции бензола</a> на поверхности графитированной сажи (см. рис. XVI, 1) в <a href="/info/7528">координатах</a> <a href="/info/41602">линейной формы</a> уравнения Лэнгмюра.
Рис. ХУГ, 5. Изотермы адсорбции этана па поверхности графитированной сажи при разных температурах. Рис. ХУГ, 5. <a href="/info/3644">Изотермы адсорбции</a> этана па поверхности графитированной сажи при разных температурах.
Рис. XV , 6. Изотерма полимолекулярной адсорбции пара бензола на поверхности графитированной сажи. Рис. XV , 6. <a href="/info/1495547">Изотерма полимолекулярной адсорбции</a> <a href="/info/1317946">пара бензола</a> на поверхности графитированной сажи.

    При малых значениях р1р и С >1 уравнение БЭТ (XVI, 32) переходит в уравнение Лэнгмюра (XVI, Юв) в соответствии с тем, что при выводе уравнения БЭТ не было принято во внимание притяжение адсорбат—адсорбат. Поэтому уравнение БЭТ выполняется тем лучше, чем относительно больше энергия взаимодействия адсорбат—адсорбент ио сравнению с энергией взаимодействия адсорбат—адсорбат, т. е. оно хорошо выполняется лишь ири больших чистых теплотах адсорбции (при С>1). Этому условию близко отвечает, например, адсорбция бензола на поверхности графитированной сажи (изотерма адсорбции представлена нй рис. XVI, 7). На рис. XVI, 8 показана зависимость дифференциальной теплоты адсорбции (т. е. теплоты, выделяющейся на моль адсорбата при данном заполнении ) пара бензола от заполнения поверхности графитированной сажи. Из рисунка видно, что ири преимущественном заполнении первого слоя (до 6 = 1) теплота адсорбции почти постоянна (Ql= 0,2 ккалЫоль, чистая теплота адсорбции Q —L=2,Q ккалЫоль), а ири преимущественно полимолекулярной адсорбции теплота адсорбции близка к теплоте конденсации Ь. [c.453]

Рис. XVI, 8. Зависимость дифференциальной теплоты адсорбции Q пара бензола от заполнения поверхности графитированной сажи 0. Рис. XVI, 8. Зависимость <a href="/info/300964">дифференциальной теплоты адсорбции</a> Q <a href="/info/1317946">пара бензола</a> от <a href="/info/360381">заполнения поверхности</a> графитированной сажи 0.
    Для определения удельной поверхности з обычно применяются изотермы адсорбции паров простых веществ (N2, Аг, Кг) при низких температурах (большие значения величины С). При этом за стандарт принята величина для азота, адсорбированного при —195 °С (78 °К) на графитированной саже, равная 16,2 А . Определив с помощью низкотемпературной адсорбции стандартного пара удельную поверхность адсорбента з, легко далее решить и обратную задачу—найти величину (и для какого-либо другого адсорбата, определив на опыте изотерму адсорбции его пара и найдя величину емкости монослоя а из графика, аналогичного показанному на рис. XVI, 9. [c.454]

Рис. XVI, 10. Зависимость дифференциальной теплоты адсорбции Qa пара четыреххлористого углерода от заполнения О поверхности графитированной сажи. Рис. XVI, 10. Зависимость <a href="/info/300964">дифференциальной теплоты адсорбции</a> Qa пара <a href="/info/1356">четыреххлористого углерода</a> от заполнения О поверхности графитированной сажи.
Рис. XVI, 11. Изотермы моно- и полимолекулярной адсорбции различных паров на однородной поверхности графитированной сажи при 20 °С Рис. XVI, 11. Изотермы моно- и <a href="/info/5964">полимолекулярной адсорбции</a> различных паров на <a href="/info/301164">однородной поверхности</a> графитированной сажи при 20 °С
    Преимущество уравнений (XVI, 35а) и (XVI, 36) перед уравнением Лэнгмюра заключается в том, что эти уравнения хорошо описывают изотермы адсорбции, обращенные в области малых значений 6 выпуклостью к оси р н имеющие точку перегиба. Такой вид изотерм адсорбции характерен для адсорбции на однородной поверхности при сильном взаимодействии адсорбат—адсорбат. На рис. XVI, II показаны примеры таких изотерм для адсорбции ряда паров на поверхности графитированной сажи. [c.456]

    ХУП, 40 а) можно найти зависимость поверхностного давления т. от величины площади 1й, приходящейся на молекулу адсорбата. На рис. ХУП, 13 представлены вычисленные из изотерм адсорбции кривые уравнения состояния для типичных случаев нелокализованной адсорбции на поверхности графитированной сажи при —78 С адсорбция без взаимодействия адсорбат—адсорбат идеальный двумерный газ, уравнение состояния (ХУП, 39)] адсорбция 5Р, сильное взаимодействие адсорбат—адсорбат, уравнение состояния (ХУП, 40а), [c.479]

Рис. ХУП, 13. Кривые уравнения состояния адсорбированных слоев на поверхности графитированной сажи при —78°С Рис. ХУП, 13. <a href="/info/812631">Кривые уравнения</a> состояния адсорбированных слоев на поверхности графитированной сажи при —78°С
    I представляет зависимость дифференциальной работы адсорбции бензола от заполнения поверхности графитированной сажи, соответствующую изотерме самой адсорбции, приведенной на рис. XVI, 11 (стр. 456), [c.483]

    НЫМИ теплотами адсорбции на графитированных сажах (см. рис. [c.493]

    При адсорбции на очень неоднородных поверхностях взаимодействие адсорбат—адсорбат будет маскироваться влиянием этой неоднородности и теплота адсорбции с ростом заполнения не будет увеличиваться. Неоднородность поверхности характеризуется наличием адсорбционных центров с различными энергиями адсорбции. Сначала заполняются центры с большими энергиями адсорбции по мере их заполнения теплота адсорбции падает. Это падение, как правило, настолько велико, что не может компенсироваться возрастающим, 1ю относительно слабым взаимодействием адсорбат—адсорбат. В качестве характерного примера можно привести теплоты адсорбции бензола на графитированной саже и кремнеземе. Дифференциальная теплота адсорбции бензола на саже с однородной поверхностью не зависит от степени заполнения из-за очень слабого взаимодействия между плоскими молекулами бензола (см. рис. XVI, 8, стр. 453). Поверхность силикагеля неоднородна как геометрически (пористость), так и химически (не- [c.502]


Рис. 7. Изотерм . адсорбци СаНд и ССЦ на однородной поверхности графитированной сажи и соответствующие хроматограммы. Рис. 7. Изотерм . <a href="/info/3228">адсорбци</a> СаНд и ССЦ на <a href="/info/301164">однородной поверхности</a> графитированной сажи и соответствующие хроматограммы.
    На рис. 15 значения Qq ( зостер.) полученные быстрым газо-хроматографическим методом для адсорбции различных членов гомологического ряда я-алка-нов на поверхности графитированной сажи, сопоставлены с результатами прямых калориметрических измерений теплот адсорбции Qa и результатами определений значений Qq из изостер адсорбции (см. стр. 485), экстраполированными к малым заполнениям поверхности 0. Результаты обоих методов близки. [c.575]

    В качестве адсорбентов (как правило, в адсорбционной газовой хроматографии) при разделении углеводородных систем применяются также графитированная сажа, цеолиты, пористые полимеры, гидроксиды и соли металлов. Иногда эти адсорбенты используются и для разделения углеводородов методом жидкостной колоночной хроматографии. Так, с помощью цеолитов ЫаХ и СаХ арены, полученные при экстракции масляных фракций фенолом, разделялись на три фракции в соответствии с размерами молекул. [90]. [c.64]

    Хорошим адсорбентом для газохроматографического разделения структурных и пространственных изомеров углеводородов оказалась графитированная сажа [57, 58]. Однако существенный недостаток многих адсорбентов, в частности, графитированной сажи,— некоторая неоднородность поверхности и, как следствие, нелинейность изотермы адсорбции, образование несимметричных [c.116]

    Графитированная сажа с 2% сквалана, — [c.120]

    А. В. Киселев [66], исследуя энергию адсорбции углеводородов на графитированной саже и силикагеле путем определения теплот адсорбции, показал, что  [c.236]

    В качестве сорбентов для концентрирования органических веществ, в том числе ПАУ и ХОС, находят применение и активные угли. Их преимущества очевидны, они способны сорбировать многие органические соединения из водных растворов, практически не набухают в воде, имеют достаточно жесткую структуру, химически и термически устойчивы Основной недостаток этих сорбентов в том, что десорбция определяемых компонентов элюированием органическими растворителями, как правило, не бывает полной. Поэтому активные угли чаще применяют для очистки воды от органических загрязнителей, тогда как непосредственно для целей химического анализа они используются реже [59]. Для этих целей более широко применяются модифицированные графитированные сажи, которые позволяют избежать осложнений, встречающихся при использовании активных углей, поскольку имеют небольшой адсорбционный потенциал. Обычно они представляют собой пудру, из которой по-186 [c.186]

    Графики зависимсти p a от р, или a p от а, или 1/а от 1/р в случае применимости уравнения Лэнгмюра дают прямые линии. Отсекаемые на оси ординат отрезки и наклоны этих прямых позволяют определить константы уравнения Лэнгмюра а и К-На рис. XVI, 4-показан пример такого спрямления изотермы адсорбции бензола на поверхности графитированной сажи (в области преимущественно мономолекулярного заполнения). [c.446]

Рис. ХУП, 12. Изотерма адсорбции ЫНа при —78°С на однородной поверхности графитированной сажи (см. рис. ХУП, 11), представленная в координатах линейной формы (ХУП, 466) уравнения изотермы мономолекулярной нелокализованной адсорбции Хилла. Рис. ХУП, 12. <a href="/info/3644">Изотерма адсорбции</a> ЫНа при —78°С на <a href="/info/301164">однородной поверхности</a> графитированной сажи (см. рис. ХУП, 11), представленная в <a href="/info/7528">координатах</a> <a href="/info/41602">линейной формы</a> (ХУП, 466) <a href="/info/3554">уравнения изотермы</a> мономолекулярной <a href="/info/361770">нелокализованной адсорбции</a> Хилла.
Рис. XVII, 14. Зависимость изменения свободной энергии LF и изменения поверхностного натяжения (поверхностного давления) — Да=я от заполнения 0 однородной поверхности графитированной сажи бензолом. Рис. XVII, 14. Зависимость <a href="/info/12282">изменения свободной энергии</a> LF и <a href="/info/431417">изменения поверхностного натяжения</a> (<a href="/info/3674">поверхностного давления</a>) — Да=я от заполнения 0 <a href="/info/301164">однородной поверхности</a> графитированной сажи бензолом.
Рис. XVII, 15. Зависимость от заполнения 0 однородной поверхности графитированной сажи бензолом Рис. XVII, 15. Зависимость от заполнения 0 <a href="/info/301164">однородной поверхности</a> графитированной сажи бензолом
Рис. XVII, 16. Изостеры адсорбции этана при различных заполнениях поверхности графитированной сажи. Рис. XVII, 16. Изостеры адсорбции этана при различных <a href="/info/360381">заполнениях поверхности</a> графитированной сажи.
Рис. XVII, 17. Зависимость от заполнения 0 поверхности графитированной сажи дифференциальных теплоты Qa и энтропии дАЗ/да адсорбции этана. Рис. XVII, 17. Зависимость от заполнения 0 поверхности графитированной сажи <a href="/info/73735">дифференциальных теплоты</a> Qa и энтропии дАЗ/да адсорбции этана.
    При водородной связи общая энергия взаимодействия адсорбата с адсорбентом увеличивается, поэтому теплота адсорбции веществ, образующих водородную связь с гидроксильными группами поверхности адсорбента, будет больше, чем теплота адсорбции веществ, сходных по геометрической форме и близких по величине энергии дисперсионного притяжения, но не образующих водородной связи. Например, теплоты адсорбции эфира и н-пен-тана на неполярной поверхности графитированной сажи близки (рис. ХУП1, 6а). На гидроксилированной поверхности кремнезема (рис. ХУП1, 66) теплота адсорбции этилового эфира (дает водородную связь) много больше теплоты адсорбции н-пентана (не дает водородной связи). Если поверхность кремнезема дегидро- [c.497]

Рис. XVni, 8. Зависимость дифференциальных теплот адсорбции неопентана и триметилкарбинола от заполнения поверхности графитированной сажи. Рис. XVni, 8. Зависимость <a href="/info/300964">дифференциальных теплот адсорбции</a> <a href="/info/314147">неопентана</a> и <a href="/info/11976">триметилкарбинола</a> от <a href="/info/360381">заполнения поверхности</a> графитированной сажи.
    Выше было показано (см. стр. 499), какую важную роль играют гидроксильные группы на поверхности окислов в отношении адсорбции молекул, имеющих дипольиые и квадрупольные моменты или зг-электронные связи. Поэтому увеличение концентрации гидроксильных и других активных функциональных групп на поверхности адсорбента (гидратация поверхности окислов, окисление саж) увеличивает энергию адсорбции таких молекул, мало изменяя энергию адсорбции молекул с более симметричными электронными оболочками (благородные газы, ССи, насыщенные углеводороды). Наоборот, удаление таких активных функциональных групп (дегидроксилирование поверхности окислов, графитированне саж) снижает адсорбцию молекул, имеющих дипольиые к каад-рупольные моменты или и-электронные связи, мало изменяя адсорбцию молекул с более симметричными электронными оболочками. [c.503]

    Интересным адсорбентом для ГАХ является графитированная сажа. Адсорбция на ней осуществляется за счет неспецифических дисперсионных сил, и при разделении смесей определяющую роль играет число контактов звеньев молекулы с плоской поверхностью частиц сажи. Например, время удерживания углеводородов Сб в соответствии с уменьшением поверхности контакта изменяется в следующем ряду гексан>бензол>циклогексан. Графптпрован-ную сажу применяют и для анализа изомеров и изотопов. [c.89]

    Углероды разных видов могут на границе твердое тело — газ физически и химически адсорбировать и десорбировать газовые и жидкие продукты. Физическая адсорбция газов (азот, аргон, 50г) происходит на базисных плоскостях кристаллита углерода теплота адсорбции 8,4—33,6 кДж/моль. В работе [88] утверждается, что адсорбция ЫНз, Нг5, 80г и СОг при низких температурах па базисных плоскостях графитированных саж осуществляется с таким же тепловым эффектом, как и адсорбция инертных газов, т. е. происходит преимущественно физическая адсорбция. Химическая адсорбция осуществляется при взаимодействии НгЗ, О2 и других активных газов с поверхностью углерода п]зи более высоких температурах. Так, установлено [58], что в интервале от —196 до —73 °С поверхность свежеизмельченного графита адсорбирует кислород преимущественно физически при более высоких температурах происходит химическая адсорбция. Как известно, на поверхности неупорядоченного углерода имеются разорва) -пые связи (свободные радикалы), которые могут присоединять кислород, что сопровождается образованием комплексов. [c.57]


Смотреть страницы где упоминается термин Графитированная сажа: [c.450]    [c.454]    [c.455]    [c.478]    [c.485]    [c.486]    [c.492]    [c.493]    [c.499]    [c.501]    [c.536]    [c.536]    [c.574]    [c.62]    [c.85]   
Курс коллоидной химии 1974 (1974) -- [ c.165 ]

Хроматографические материалы (1978) -- [ c.20 , c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты сажа графитированная

ГТС Графитированная термическая сажа

Графитированная сажа и расщепленный графит

Графитированные сажи

Графитированные сажи и карбохромы

Изотерма адсорбции на графитированной саже

Простейший неспецифический адсорбент с одноатомной однородной поверхностью — графитированная термическая сажа

Сажа графитированная термическая ГТС канальная

Сажа графитированная термическая ГТС модифицированная

Сажа графитированная термическая ГТС получение

Сажа графитированная термическая ГТС удерживание алкадиенов

Сажа графитированная термическая ГТС характеристики

Щербакова. Графитированные сажи в газовой хроматографии



© 2024 chem21.info Реклама на сайте