Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колориметрический метод ошибки

    Погрешность в результатах анализа зависит также от метода последующего определения. При использовании колориметрических методов относительная ошибка обычно составляет 1—5%, Спектрофотометрический метод дает примерно 5%, а флуорометрический —3—8% и в отдельных случаях до 15%. [c.153]

    Имея такой набор, можно быстро измерить pH неизвестного, но обязательно бесцветного раствора. Измерение pH сводится к сопоставлению окраски испытуемого раствора, в который добавляется индикатор, с окраской эталонных растворов. Хотя колориметрический способ менее точен, чем электрометрический (наименьшая ошибка колориметрического метода составляет 0,02—0,05 единиц pH), но вследствие большой простоты аппаратуры и быстроты измерений он нашел широкое распространение. [c.495]


    Найти стандартное отклонение отдельного определения и сделать выводы о наличии систематической ошибки при определении цинка данным колориметрическим методом. [c.23]

    Определить ошибку колориметрического метода по текущим измерениям. [c.34]

    Ошибка колориметрического метода, определенная по текущим измерениям, равна [c.35]

    Необходимо отметить, что при большом содержании определяемого элемента весовой или объемный методы анализа дают более точные результаты. Это объясняется отчасти несовершенством оптической аппаратуры (по сравнению с весами), а также недостаточным знанием химических условий реакций образования окрашенных соединений. Однако при малом содержании того или другого компонента колориметрический метод дает более точные результаты. При взвешивании на аналитических весах количеств вещества порядка 1 10 г вероятная ошибка определения составляет 10%, а взвешивание меньших количеств практически невозможно колориметрическое же определение таких количеств (как это было показано на примере марганца) вполне возможно. [c.215]

    Визуальные колориметрические методы применяются лишь для определения компонентов, содержащихся в исследуемом веществе в очень малых количествах, когда допустима большая относительная ошибка в получаемом результате. Если определять железо в железной руде визуальным колориметрическим способом, то получится совершенно недопустимая ошибка в анализе. [c.11]

    На практике все еще очень широкое применение находит колориметрический метод определения pH с использованием растворов индикаторов и индикаторных бумажек. Однако следует помнить, что этот метод во многих практических случаях или не может быть применен вовсе (окрашенные растворы), или дает очень большие ошибки (например, в присутствии поверхностно-активных веществ). [c.284]

    Солевой эффект и эффект среды. Как мы уже видели, изменения ионной силы и состава растворителя могут привести к большой неопределенности в значениях pH, найденных с помощью индикатора. Если бы можно было иметь больше информации о кислотно-основных равновесиях, то эффекты, вызываемые указанными выше причинами, могли бы быть в значительной степени поняты и учтены. Соответствующая неопределенность возникает не только из-за чрезмерного упрощения при количественном описании кислотно-основных равновесий и не является следствием случайных ошибок. Все это существенно снижает полезность колориметрического метода определения pH. Чтобы ошибки были минимальными, буферные и исследуемые растворы должны, насколько это возможно, иметь одинаковую ионную силу и состав растворителя. [c.152]


    Ошибки колориметрического метода определения pH [c.165]

    Обычно колориметрическое определение pH проводится с точностью до 0,1 рн. Но очень часто ошибки определений оказываются значительно большими, и колориметрический метод становится ненадежным, Источников ошибок определения может быть несколько. [c.165]

    Точность колориметрических методов анализа (если оптическую плотность раствора измеряют визуально, а не в фотоколориметре или спектрофотометре) обычно не превышает 5% отн., а во многих методах относительная ошибка достигает 10% и более. Согласно правилу 4, точность результата не может быть больше, чем точность наименее точного измерения, и поэтому, как бы точно ни проводилось взвешивание пробы для анализа, если этот анализ заканчивается колориметрическим определением, то точность результатов не будет выше указанных 5%. Следовательно, если, отвешивая для анализа 1 г пробы, проводят эту операцию с точностью 0,01 г, т. е. с предельной относительной ошибкой 1%, то такая точность более чем достаточна. [c.11]

    Анализируя ошибки, возникающие при применении колориметрических методов, можно сказать следующее. Применение метода стандартных серий, связанного с чувствительностью человеческого глаза к близким окраскам, дает ошибки порядка 15— 20%. При применении метода дублирования ошибка связана с точностью отсчета по бюретке (1—3%) и той же величиной ошибки сравнения окрасок (15—20%). В методе уравнивания сравнение окрасок значительно облегчается и ошибка составляет около 4—8%. Таким образом, во всех колориметрических методах одним из основных источников ошибок является ошибка, возникающая при уравнивании окрасок. Поэтому особое внимание следует уделить условиям работы и предупреждению утомляемости глаза. Как упоминалось выше, значительные ошибки может дать неправильная подготовка проб к колориметрическому анализу. Отступления от метода подготовки пробы могут вызвать значительные изменения окраски и, следовательно, ошибку определения. Эта категория ошибок одинаково влияет на определение при всех колориметрических методах. В большинстве случаев ошибка при отборе проб и взятии навесок значительно меньше ошибок при всех последующих операциях и ею можно пренебрегать. [c.58]

    В настоящее время для анализа фолиевой кислоты и ее препаратов применяется колориметрический метод анализа [30]. Метод многостадиен и дает большую ошибку, а при анализе поливитаминных препаратов присутствие витаминов Вд и С мешает определению. Мы использовали способность фолиевой кислоты восстанавливаться на ртутном капельном катоде [31] в буферных растворах в широком интервале значений pH. [c.182]

    Как видно, наибольшие отклонения в результатах анализа различными методами наблюдаются при исследовании поливитаминных таблеток, содержащих рибофлавин, что мы объясняем ошибкой колориметрического метода за счет наложения естественной окраски рибофлавина. [c.184]

    Ошибка колориметрического метода определения кислорода не превышает 10% относительных. Продолжительность анализа для двух параллельных проб 30 мин. Метод обнаруживает до 0,1 % кислорода. Для анализа требуется не более 0,5 мл газа. Кислород может определяться в широком интервале концентраций. [c.152]

    Когда титан и цирконий не сопровождаются другими элементами, осаждаемыми аммиаком, лучше всего осадить их этим реактивом. С другой стороны, нри благоприятных условиях колориметрический метод определения титана (стр. 655) дает результаты, не уступающие результатам, получаемым лучшими из весовых методов, и при этом в значительно более короткое время, особенно нри определении тех малых количеств титана, какие обычно встречаются в горных породах, глинах и почвах (менее 1% и лишь изредка до 2—3% и более). Ошибка при применении этого метода не должна превышать 2 % в широких пределах концентраций [c.965]

    Более простым, а в ряде случаев, видимо, и более точным является гравиметрический метод определения суммарного содержания фенолов. Последние в данном методе выделяют раствором щелочи и после подкисления экстрагируют эфиром. После сушки и отгонки эфира фенолы взвешивают. Содержащиеся в пробе органические кислоты предварительно удаляют действием бикарбоната натрия. Метод предпочтителен для анализа сложных фенольных смесей, так как бромометрический и колориметрические методы в этом случае дают значительные ошибки первый — в результате протекания побочных реакций присоединения брома и образования высокозамещенных продуктов второй — в результате зависимости интенсивности окраски не только от количества, но и от строения фенолов. Это подтверждают недавно полученные Тилеманном данные [55] по анализу смесей ксиленолов. [c.49]

    Определение в воде и сточных водах проводят колориметрическим методом [0-13] и методом хроматографии на бумаге, чувствительность 0,25 мг/л, ошибка определения 1,5—5,0% [7]. [c.56]

    Точность колориметрических методов анализа обычно не превышает 5 / относительных, а в ряде методов относительная ошибка достигает 10% и более. Согласно правилу 4 точность результата не может быть больше, чем точность наименее точного измерения и поэтому как бы точно ни производилось взвешивание пробы для анализа, но если этот анализ заканчивается колориметрическим опре- [c.13]


    Визуальные колориметрические методы применяются лишь для определения компонентов, содержащихся в исследуемом веществе в очень малых количествах, когда допустима большая относительная ошибка в получаемом результате. Если определять железо в железной руде ви- [c.11]

    Пример. При анализе сплава на содержание меди хси колориметрическим методом получены результаты (мг) 4,87 4,96 4,80 4,79 4,90. Вычислите абсолютную ошибку метода. [c.6]

    Следует заметить, что точность метода не уступает точности весового и объемного методов, в то время как ошибка обычного колориметрического метода редко бывает меньше 5%. [c.189]

    Этот колориметрический метод несколько менее чувствителен, чем предыдущий, но получаемая окраска более устойчива, и определение может быть проведено с точностью 0,1% (относительная ошибка). Температура, при которой проводят измерение, имеет большое значение отклонение равно 0,4% на 1°С. [c.853]

    На рис. 1 показано, что при колориметрическом методе-определения натрия по группе уранила возможны ошибки за счет разлон епия железистосинеродистого калия, вводимого в растворы для образования железистосинеродистого уранила. Это обстоятельство, а также большая зависимость реакции от температуры и времени, заставили нас отказаться от приведенной цветной реакции. [c.206]

    Возможные ошибки при определении pH колориметрическим методом. Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора от белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.) от индикаторной ошибки, так как белки, обладающие амфотерными свойствами, взаимодействуют с кислотными и основными индикаторами, а также адсорбируют индикатор при этом происходит изменение общей концентрации его в испытуемом растворе таким образо.м, добавление значительных количеств индикаторов, которые, являясь слабыми кислотами и основаниями, могут, особенно в незабуференных растворах, изменять значение pH от температурной ошибки, зависящей от изменения константы диссоциации индикатора при колебаниях температуры так, -нитрофенол имеет при 0 С р/С = 7,30, а при 50° С рК = 6,81 с изменением температуры изменяется и pH стандартных растворов. [c.67]

    Определение галои-дов в сере основано на сжигании образца, поглощении продуктов тридистиллятом и упаривании со щелочью. Полученный раствор солей обрабатывают сильным окислителем, газовый поток очищают, галоиды собирают в ловушку, охлаждаемую жидким воздухом, и определяют спектроскопически. Чувствительность определения хлора 10 %, брома и иода — 10 % [7]. Определение хлоридов в сере описано в работе [232]. Используются нефелометрический, линейно-колористиче-ский и колориметрический методы. Последний основан на разрушении хлоридами окрашенного соединения ртути (II) с дифенилкарбазоном. Применение бензола увеличивает чувствительность метода до 0,16 мкг, а хлороформа — до 0,02 мкг в 1 мл. Средняя ошибка определения 4—10%. [c.217]

    Колориметрическим методом установлено, что в каждых 500 мл фильтрата остается 0,1—0,2 мг ОагОз, в 150—200 мл промывных вод растворяется 0,01 мг ОааОз Большие ошибки возникают вследствие прилипания осадка к стенкам стакана, несмотря на интенсивное вымывание, количество теряемого осадка может составлять от 0,1 до 0,6 мг. [c.76]

    Примечание, Не следует думать, что при определении м а-л ы X количеств колориметрические методы анализа уступают по точности другим методам. Наоборот, если в предыдущем примере определять сурьму не колориметрическим способом (как это обычно делается), а гравиметрическим, то пришлось бы взвешивать около 0,0003 г 5Ьг04, что на обычных аналитических весах нельзя сделать с предельной ошибкой, меньшей 33% относительных. При этом еще не учитывается неизбежная значительная ошибка, возникающая вследствие присутствия в прокаленном осадке загрязнений, ошибка, которая не могла бы быть устранена даже в случае применения микровесов. [c.11]

    Кремний определяют весовым методом и колориметрически по методу Диэнера и Ванденбульке. Эти авторы считают, что колориметрический метод определения кремнекисло-ты дает ошибку, не превышающую 2%, а при содержании кремневой кислоты 1 мг Si/л — около 5%. [c.134]

    Метены определения. В воздухе. Колориметрический метод, основанный на нитровании Т. с образованием в присутствии кетона в щелочной среде соединения оранжево-розового цвета пределы определяемых концентраций 1—10 мкг в 2 мл пробы определению мешают другие ароматические углеводороды. Метод ГХ минимально определяемое количество 0,05—0,1 мкг. Спектрофотометрический метод, основанный на изменении свето-поглощения раствора Т. в этиловом спирте чувствительность 10 мг/м при отборе 10 л воздуха, относительная ошибка +15 % (Трейстер). Экспрессный колориметрический метод с применением индикаторных трубок диапазон измерений 1,92—38,4 мг/м . С помощью универсального переносного газоанализатора типа УГ-2 при объеме анализируемого воздуха 400 мл диапазон измеряемых концентраций О—60 мг/м [41, 49]. См. также Ксилолы. В биосубстратах—см. [7]. Там же см. определение гиппуровой и бензойной кислоты в крови и моче. [c.150]

    Методы определения. В воздухе. ГХ определение Д. ошибка 7,3 % (Peers, Ma Kenzie). ГЖХ на приборе с пламенноионизационным детектором чувствительность в анализируемом объеме 30 мг, в воздухе — 6 мг/м ошибка — 5 % [40]. Фото-колориметрический метод чувствительность 5 мкг в анализируемом объеме присутствие 1,2-дихлорэтана, четыреххлористого углерода, хлора и хлороводорода определению не мешают. Модификация метода позволяет сократить время анализа с 2 ч до И— 12 мин и повысить специфичность определение можно проводить в присутствии хлорпроизводных и метанола. Другой колориметрический метод предназначен для быстрого определения Д. в п р о-мы тленных выбросах [66]. В воде. ГХ метод с использованием хроматографа с пламенно-ионизационным детектором чувствительность 5 мг/л (Феофанов и др.). ГХ метод предложен и для определения Д. вполимерном материале относительная ошибка не превышает 5 % (Феофанов и др.). В крови, моче, желчи и выдыхаемом воздухе. ГХ метод с использованием хроматографа с пламенноионизационным детектором чувствительность метода 10 мг (10 мкг в пробе). Известен также ГХ метод определения Д. в крови, в тканях эмбриона и плода, в грудном молоке [66]. [c.326]


Смотреть страницы где упоминается термин Колориметрический метод ошибки: [c.145]    [c.73]    [c.315]    [c.11]    [c.241]    [c.45]   
Физико-химические методы анализа Изд4 (1964) -- [ c.36 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

ошибки



© 2025 chem21.info Реклама на сайте