Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы, внутренняя структура

    Реальные кристаллы. Внутреннее строение кристаллов отнюдь не во всех реальных кристаллах полностью отвечает описанному нами. Последнее относится скорее к тому редкому случаю, когда условия образования кристалла не вызывали никаких искажений в его структуре. Большей же частью образование кристалла происходит в условиях, приводящих к тем или иным отклонениям во внешней форме его, или к дефектам в его внутренней [c.143]


    Для металлических и других систем диаграммы состояния дают возможность судить о внутренней структуре сплавов, об образовании соединений между компонентами и их составе, об образовании смешанных кристаллов и многих других особенностях внутреннего строения сплавов. [c.353]

    По структуре жидкое состояние является промежуточным между твердым состоянием со строго определенной периодической структурой во всем кристалле (наличие дальнего порядка) и газом, в котором отсутствует какая-либо структура и движение частиц беспорядочно. Отсюда для жидкости характерно, с одной стороны, наличие определенного объема, а с другой — отсутствие определенной формы. Первое обстоятельство сближает ее с твердыми телами, второе — с газами. У жидкости вблизи температуры затвердевания упорядоченность внутренней структуры становится более четко выраженной. Напротив, по мере приближения жидкости к температуре кипения усиливается беспорядок во взаимном расположении частиц. [c.119]

    СК Реальные кристаллы. Описанная в 50 внутренняя структура кристалла, характеризующаяся строгой пространственной периодичностью, представляет собой известную идеализацию. Исследование строения реальных кристаллов показало, что во всяком кристалле эта периодичность всегда несколько нарушена. В реальных кристаллах наблюдаются дефекты структуры. Число этих дефектов ч их тип оказывают влияние на некоторые свойства кристаллических веществ. В ряде случаев эго влияние очень сильно, а некоторые из таких структурно-чувств и тельных свойств имеют очень большое практическое значение. [c.162]

    Получив некоторое представление о свойствах симметрии внутренней структуры кристалла, займемся теперь анализом взаимодействия рентгеновских лучей с этим кристаллом. Для этого используем соотно- [c.374]

    Внутренняя структура кристаллов и аморфных твердых гел стала доступной для экспериментального изучения благодаря использованию для этой цели рентгеновских лучей (метод Вульфа — Брегга, 1912). [c.19]

    Количество взаимодействующих атомных орбиталей не влияет на ширину зоны, а определяет лишь плотность ее заполнения электронами. Ширина энергетических зон в твердых телах существенно зависит от внутренней структуры их кристаллов. Эта зависимость тесно связана с волновой природой движения электронов. Перемещаться по кристаллу способны лишь те электроны, длины волн которых не укладываются целое число раз между узлами кристаллической решетки. Электроны с длиной волны, равной (2а//г), где а — постоянная решетки, будут находиться в кристалле в условиях замкнутого отражения и не способны переносить энергию. [c.83]


    Внутренняя структура кристаллов 123 [c.123]

    Использование описанных методов позволило исследовать внутреннюю структуру большого числа различных кристаллов и определить закономерности присущего им расположения частиц. [c.123]

    Внутренняя структура кристаллов. Как показали указанные выше исследования, частицы, образующие данный кристалл [c.123]

    Исследование внутренней структуры этих кристаллов показы-пает, что характер связи молекул воды с ионами может быть различны. (даже для молекул воды, входящих в состав данного кристаллогидрата). Молекулы воды могут связываться как с катионами, так и с анионами они могут также входить в решетку кристалла в промежутки между ионами или слоями их, взаимодействуя одновременно с двумя или тремя ионами. [c.141]

    Сегодня ясно, что симметрия внещней формы отражает симметрию внутренней структуры кристалла, т. е. пространственную периодическую повторяемость расположения частиц в узлах пространственной решетки того или иного вида. [c.89]

    Кристаллы любого вещества, например сахара или хлорида натрия, можно получить разного размера — крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещества внутреннюю структуру [c.289]

    Симметрия внешней формы отражает симметрию внутренней структуры кристалла, т. е. правильную периодическую повторяемость расположения частиц в узлах пространственной решетки того или иного вида. Пространственную решетку можно рассматривать как состоящую из параллелепипедов — элементарных ячеек. [c.133]

    Селен, как и сера, имеет, несколько аллотропных модификаций, обладающих различной внутренней структурой. Самой устойчивой из них является серый селен, образованный бесконечными спиральными цепями его атомов, уложенными в кристаллах параллельно друг другу. Две другие модификации по отношению к серому селену метастабильны. Серый селен является полупроводником р-тнпа. с шириной запрещенной зоны 1,5 эВ. [c.324]

    Весьма тонкие современные методы исследования кристаллического состояния вещества подтвердили, что частицы в кристаллах (атомы, молекулы, ионы) располагаются закономерно, образуя так называемую пространственную решетку кристалла. Внешняя геометрическая форма кристалла теснейшим образом связана с его внутренней структурой. В кристаллической решетке любого тела можно выделить определенную часть, которая носит название элементарной ячейки. Она представляет собой наименьший объем кристаллической решетки вещества, который точно отражает его химический состав и все особенности внутренней структуры данного кристалла. [c.30]

    Исследовать внутреннюю структуру кристаллов удалось в XX веке, после того, как в 1912 г. была открыта дифракция рентгеновских лучей, на которой основан рентгеноструктурный анализ. [c.159]

    Вследствие сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твердым телам относят только вещества в кристаллическом состоянии. Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах, в отличие от обычных жидкостей, частицы имеют незначительную подвижность — такую же, как в кристаллах. [c.164]

    Структура продуктов гидратации. Наиболее правильно образованные кристаллы получаются лишь в тех случаях, когда рост их происходит достаточно медленно. Это достигается, если кристаллизация происходит в условиях, не слишком отдаленных от равновесных. При удалении от них, т. е. при выделении из более пересыщенных растворов или из более переохлажденных расплавов, становится возможным образование кристаллов с различными нарушениями правильности внутренней структуры или внешней огранки. [c.20]

    Рентгеноструктурный анализ — это метод исследования внутренней структуры кристаллов при помощи его определяют расстояния между соседними атомами в кристаллической решетке металлов и устанавливают тип кристаллической решетки (подробнее см. 24). [c.277]

    Некоторые сведения о внутренней структуре кристаллов [c.47]

    Волновые свойства электронов широко используются на практике (в электронной микроскопии, при исследовании внутренней структуры кристаллов и т. д.). [c.30]

    Координационное число — одна из важнейших количественных характеристик внутренней структуры кристалла. С этим числом связаны некоторые свойства кристаллических образований (твердость плотность и т. д.). Антураж оказывает также значительное влияние на размеры эффективных радиусов частиц в кристаллах, а также на величину энергии кристаллической решетки. [c.126]

    Если радиусы атомов сплавляемых металлов близки между собой, то такие металлы смешиваются в любых количественных соотношениях как в жидком, так и в твердом состоянии (образуют твердые растворы, представляющие собой по своей внутренней структуре смешанные кристаллы). [c.308]


    Симметрия внешней формы отражает симметрию внутренней структуры кристалла, т. е. правильную периодическую повторяемость распо южения частиц в узлах пространственной реше1ки того или иного вида. Характерной особенностью кристаллических тел, вытекающей из их строения, является анизотропия. Она проявляется в том, что механические, электрические и другие свойства кристаллов зависят от направления в кристалле. [c.101]

    Дисперсное состояние вещества. Дисперсные системы. Кристаллы любого вещестиа, 11а1 римс [), сахара или хлорида натрия, можно получить разного размера — крупно- и мелкокристаллические. Каков бы ИИ был размер кристаллов, все они имеют одинаковую для данного вещества внутреннюю структуру — молекулярную или ионную кристаллическую решетку. [c.305]

    В качестве примера кристаллических веществ, внутренняя структура которых отвечает ионной решетке, рассмотрим хлористый натрий. На рисунке V-8 схематически представлено строение элементарной ячейки этого вещества. Принимая сферическую форму ионов с определенными эффективными радиусами, внутреннюю структуру кристалла Na l следует представлять себе как плотную упаковку шаров различного радиуса. Так, эффективный радиус катиона натрия равен 0,98 A, а аниона хлора— 1,81 А (радиус катиона, как правило, меньше радиуса аниона). На рисунке V-9 представлена структура Na l в виде модели, в которой соблюдены соотношения размеров ионов при их плотной упаковке. [c.121]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением o taвля-ЮИ1ИХ их частиц — атомов, ионов или молекул. Это расположение может быть представлено в впде кристаллической решетки — пространственного каркаса, образованного пересекающимися друг с другом прямыми линиями. В точках пересечения — узлах решетки— лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности, М. В. Ломоносов нсполь-зовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось [c.141]

    Из более сложных кристаллов рассмотрим только кальцит, СаСОз (рис. 37). Ионы СО , являющиеся структурной единицей кристалла, окружены 6 ионами кальция. Внутренняя структура самого иона СОз" отвечает плоскому правильному треугольнику, в центре которого находится углеродный атом и в вершинах — кислородные атомы. [c.130]

    В этом случае на поверхности металла возникает множество микроскопических гальванических элементов — микроэлементов и субмикроэлементов, при работе которых растворяется один из компонентов сплава, что приводит к постепенному разрушению поверхностных слоев металла. Электродные потенциалы зависят не только от вида металла, но в меньшей степени и от кристаллической. модификации его, от различных дефектов в решетке кристалла, от напряжения во внутренней структуре. Поэтому все виды неоднородности металла, в том числе и вызываемые такими методами обработки, как ковка, прокат, волочение и пр., могут в той или иной форме и степени влиять на течение коррозионных процессов. Вследствие указанных причин будут возникать химические цепи. [c.455]

    В СВЯЗИ С ЭТИМИ трудностями В последнее время стали применять молекулярные сита, что дало возможность поставить на более высокий уровень получение чистых и особо чистых веществ. Молекулярные сита представляют собой пористые кристаллы цеолитов. Цеолиты — это водные алюмосиликаты кальция, натрия и других металлов. Известен целый ряд природных цеолитов (шабазит, мор-денит, гмелинит и др.), в структуре кристаллов которых имеются полости, сообщающиеся друг с другом через относительно узкие окна (рис. 123). Число таких полостей в кристалле обезвоженного цеолита очень велико. В цеолитах некоторых типов общий объем полостей достигает около половины всего объема кристалла. Внутренняя поверхность этих полостей составляет несколько сот квадратных метров в 1 г цеолита, благодаря чему цеолиты служат хорошими адсорбентами. Размер этих окон очень мал и примерно соответствует [c.309]

    Изучение жидкостей показывает, что они обладают некоторой внутренней упорядочениостью, которая не так сильно вырал<о-иа, как у твердых тел. В то же время модель бесструктурного газа неприменима для описания жидкостей. По внутренне структуре жидкости занимают промежуточное положение между твердыми телами и газами. Нередко жидкости представляются как разупорядоченное твердое тело, например кристалл, часть ячеек которого не заполнена. Поскольку в жидкости молекулы находятся близко друг к другу, их внутреннее строение и свойства оказывают существенное влияние на свойства жид- [c.41]

    Внутренняя структура зерна металла не является строго правильной. Металлам, как и всем реапьным кристаллам, присущи дефекты структуры. При этом многие свойства металлов сильно зависят от характера и от числа имеющихся в металле дефектов. Так, в процессах диффузии важную ро.оь играют вакансии. Эти процессы протекают, например, при насыщении в горячем состоянии поверхностного слоя металлического изделия другими элементами для защиты от коррозии или для придания поверхности изделия тв ердости. Проникновение атомов постороннего элемента в глубь металла происходит, в основном, по местам вакансий. С повышением температуры число вакансий возрастает, что служит одной из причин ускорения процесса диффузии. [c.320]

    Избирательное травление и растворение минералов. Путем обработки поверхности шлифа (или скола) растворами определенных солей удается селективно растворить кристаллы одного минерала, не затрагивая кристаллов других минералов. Так, при обработке поверхности скола клинкера метиловым эфиром салициловой кислоты растворяются кристаллы СзЗ и СгЗ и сохраняют первоначальную форму кристаллы алюминатов и алюмоферритов кальция. При частичном растворении кристаллов алнта и белита удается вскрыть их тонкую внутреннюю структуру — двойниковую текстуру, сростки и др. [c.143]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением составляющих их частиц - атомов, ионов или молекул. Как указано выше, это расположение может быть представлено в виде кристаллической решетки - пространственного каркаса, образованного пересекающимися друг с другом плоскостями. В точках пересечения трех плоскостей (узлах решетки) лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности М. В. Ломоносов использовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось только в XX столетии, после того как в 1912 г. Лауэ, Фридрих и Книппинг (Германия) открыли явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.151]

Рис. V-8. Элементарная ячейка Рис. V-9. Внутренняя структура кристаллической решетки Na l Na l как ионного кристалла плот- Рис. V-8. <a href="/info/4904">Элементарная ячейка</a> Рис. V-9. Внутренняя <a href="/info/584977">структура кристаллической решетки</a> Na l Na l как <a href="/info/69397">ионного кристалла</a> плот-
    Полиморфизм. Некоторые вещества (простые или сложные) в зависимости от условий кристаллизации могут образовывать кристаллы различной формы и внутренней структуры. Это явление получило название полиморфизма (греч. poly—много, многое morphe — форма polymorphos — многообразный). [c.126]


Смотреть страницы где упоминается термин Кристаллы, внутренняя структура: [c.35]    [c.135]    [c.194]    [c.237]    [c.127]    [c.128]   
Учебник физической химии (1952) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл структура



© 2025 chem21.info Реклама на сайте