Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вульфа метод

    Процесс Вульфа для получения ацетилена состоит в пиролизе природного газа или пропана нри температуре 1200—1400° и низком парциальном давлении в печах, работающих по регенеративному циклу с периодами пиролиза и нагрева. Процесс Вульфа наиболее применим там, где имеется много дешевого углеводородного сырья, а смесь окиси углерода и водорода, получающаяся нри пиролизе по методу Захсе, не нашла бы применения. [c.96]


    Процесс пиролиза по Вульфу [104] осуш ествляют по регенеративному принципу. Ацетилен образуется в результате пиролиза газообразных алифатических углеводородов в присутствии водяного пара при 1200—1370" и нахождении газа в зоне пиролиза в течение 0,1 сек. Осаждающуюся в печи сажу сжигают в период нагрева. Продукты пиролиза обрабатывают примерно так же, как в случае пиролиза по методу Саксе. [c.128]

    В. ПИРОЛИЗ МЕТАНА МЕТОДОМ ВУЛЬФА [6] [c.96]

    При методе Копперс—Хаше—Вульфа для достижения высоких температур используется принцип регенеративной печи. В печи, заполненной огнеупорным кирпичом, получают нужную температуру реакции, сжигая горячий газ с подогретым избыточным количеством воздуха. Спустя 0,5—2 мин камера переключается, подогретый углеводород вводится в систему вместе с водяным паром. Менее чем через 0,03 с продукты реакции выходят из печи, охлаждаются до --370 °С и подвергаются дальнейшему резкому охлаждению путем орошения водой. [c.39]

    В методе поликристалла (метод Дебая — Шеррера) используется монохроматическое излучение к и поликристаллический образец, состоящий из множества мелких кристалликов, хаотически ориентированных по отношению к первичному пучку рентгеновских лучей. Если образец состоит из сравнительно мелких кристалликов (порядка 1—5 мкм), то в участке образца, облучаемом рентгеновским пучком, всегда найдется достаточное число таких кристалликов, ориентация которых удовлетворяет условию Вульфа — Брегга (1.36в). [c.118]

    Внутренняя структура кристаллов и аморфных твердых гел стала доступной для экспериментального изучения благодаря использованию для этой цели рентгеновских лучей (метод Вульфа — Брегга, 1912). [c.19]

    СОСТАВ ГАЗООБРАЗНЫХ ПРОДУКТОВ, ПОЛУЧАЮЩИХСЯ ПРИ ПРОИЗВОДСТВЕ АЦЕТИЛЕНА ПО МЕТОДУ ВУЛЬФА, ОБ. % [c.274]

    Эти открытия позволили последовательно создать ряд дополняющих друг друга методов дифракционного структурного анализа (рентгено-, электроно-, нейтронографию). Большой вклад в создание основ теории структурного анализа внесли работы отечественных кристаллографов по точечным, пространственным и магнитным группам симметрии кристаллов (А. В. Гадолин, Е. С. Федоров, Ю. В. Вульф, А. В. Шубников, Н. В. Белов) [12]. [c.16]

    Для исследования поликристаллических материалов, к которым относятся практически все кристаллизующиеся полимеры, используется метод Дебая-Шеррера (метод порошка). Если на поли-кристаллический образец падает пучок монохроматического рентгеновского излучения, то в образце всегда найдутся кристаллы, которые будут находиться в условиях, когда выполняется формула Вульфа-Брэгга. Так как эти кристаллы ориентированы в образце хаотически, то при отражении от каждой системы параллельных плоскостей внутри таких кристаллов возникнет конус дифрагированных рентгеновских лучей. Ось этого конуса совпадает с направлением первичного пучка лучей. Поставив за образцом перпендикулярно лучу кассету с плоской фотопленкой, получают на пленке систему колец. [c.171]


    Эффективный радиус иона — это радиус сферы действия иона в данном кристалле. Он не является для данного иона (как и радиус атома) строго определенной величиной, зависит от типа связи и от координационного числа. Эффективные радиусы находят из расстояний d между центрами соседних ионов. Эти расстояния определяются с большой точностью современными методами рентгеноструктурного анализа (Вульф, Брэгги, Дебай и др.). Их приравнивают сумме радиусов ионов. Например, у Na l длина ребра элементарной ячейки найдена равной 5,62 А. откуда d = 2,81 А У фторида натрия d = 2,31 А и т. д. Однако, чтобы найти ионные радиусы, нельзя d просто делить пополам, как это делается при вычислении радиусов атомов в атомных решетках простых веществ. Надо знать, по крайней мере, радиус одного иона, найденный тем или другим способом. Наиболее надежная исходная величина была получена для иона [c.129]

    Все эти данные необходимы для установления кристаллохимического строения твердого вещества. Метод РСА основан на уравнении Брэгга — Вульфа  [c.196]

    Экстраполяция на Л= оо здесь и в дальнейшем изложении выполнена методом Вульфа. [c.20]

    Процедура построения выпуклого многогранника, аппроксимирующего области производственных возможностей, имеет определенное структурное сходство с методом разложения Данцига — Вульфа [16]. Пусть имеется Д (к= , Ь) предприятий, производственные возможности которых описываются линейной моделью блочной структуры следующего вида к I. [c.24]

    Описанный метод является модификацией метода Вульфа [c.275]

    Вульф сон Н, С., Зарецкий В. И,в кн. Реакции и методы исследования органических соединений, кн. 12, М., 1963, 7-257. [c.168]

    А. И. Русанов [146] дает достаточно простой и вместе с тем строгий метод доказательства теоремы Вульфа, который он использовал при обобщении теоремы Вульфа с учетом реберной энергии монокристалла. После обобщения теорема Вульфа приняла следующий вид  [c.42]

    Метод Шеррера [88] основан на том, что при уменьшении размеров зерен растет доля рентгеновского излучения, рассеянного с отклонением от закона дифракции Вульфа-Брэгга, в результате чего рентгеновские пики на рентгенограммах уширяются. [c.71]

    Электронография при исследовании окалины занимает особое место Сущность метода заключается в использовании явления дифракции электронов, возникающего в результате когерентного рассеяния кристаллической решетки вещества пучка электронов с длиной волны X < < 1(1 (где с1 - наименьшее изучаемое межплоскостное расстояние) Метод дает возможность получать такие же данные о кристаллической структуре веществ, как и рентгеновский метод. При этом для расчета электронограмм используется известное в рентгенографии уравнение Вульфа — Брэгга  [c.22]

    Чтобы завершить рассмотрение особенностей метода, отметим его основные недостатки. Они обусловлены тем, что значения длин волн электронов, получаемые в современных электронографах с ускоряющим напряжением в несколько десятков киловольт, составляют сотые доли ангстрема, что меньше длин волн, применяемых рентгеновских лучей. Поэтому углы дифракции, определяемые по уравнению Вульфа - Брэгга, очень малы. Например, для межплоскостного расстояния 0,1 нм при длине волны 0,005 нм (ускоряющее напряжение порядка 50 кВ) угол дифракции составляет всего около 1,5 град. Вследствие этого разрешающая способность по этому методу ниже и меньше точность определения меж-плоскостных расстояний, чем при использовании рентгенографии. [c.23]

    Рентгеноструктурный анализ (рентгенография) используется для изучения структуры кристаллической решетки целлюлозы - определения параметров ее элементарной ячейки, размеров кристаллитов, а также степени кристашгичности. Вскоре после разработки Лауэ основ рентгенографического анализа Нишикава и Оно в 1913 г. получили первую рентгенограмму целлюлозы рами. В настоящее время используют современный метод регистрации рентгеновских лучей, рассеянных кристаллической решеткой, - дифрактометрический с получением дифрактограммы. Дифрактограмма представляет собой кривую зависимости интенсивности рассеянных лучей I от угла рассеяния 20, где 0 - брегговский угол в законе Вульфа - Брегга (см.5.4). [c.241]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]


    Для изучения фазового состава поверхностного слоя катализаторов пользуются методом электронографии [27], так как глубина проникновения электронных лучей гораздо меньше рентгеновских и составляет величину порядка десятков и сотен ангстрем. Этот метод является также полезным при исследовании процесса образования новых фаз, когда количество новой фазы незначительно и кристаллы имеют малые размеры. В этом случае интенсивность рентгеновских рефлексов ничтожно мала и они теряются на фоне рентгенограммы, в то время как электронограмма дает отчетливую картину. Определение фазового состава поликристаллических веществ методом дифракции электронов обычно проводится по их межплоскостным расстояниям, рассчитываемым в свою очередь по формуле Брэгга—Вульфа. Точность определения межплоскостных расстояний по электро-нограммам значительно меньше, чем рентгеновским методом. [c.381]

    Результаты опытов пиролиза этана и пропана по регенеративному методу (метод К()пперс-Хаше-Вульфа)  [c.91]

    Известно достаточно большое число работ, в которых рассматриваются различные декомпозиционные методы статической оптшлизации или, как их иначе называют, методы многоуровневой отггимизации. К наиболее важным работам в этом направлении относятся работы Данцига и Вульфа, Беллмана [1], Гейла, Лэсдона [2], а также отечественных авторов В.В. Кафарова, Г.М.Островского, В.М.Володина и других [c.93]

    Метод порощка (метод Дебая — Шерера). Съемка рентгенограмм (дебаеграмм) ведется в камерах с использованием монохроматического рентгеновского излучения и поликристаллических образцов из тонкого порошка в виде цилиндрического столбика (диаметр обычно 0,5—0,8 мм, высота 5—6 мм), плоского щлифа или порошка, наклеенного на подложку. Регистрация рентгеновского излучения осуществляется на узкой полоске фотопленки, свернутой в цилиндр. Рентгеновские лучи отражаются от поликристаллического образца, кристаллы которого расположены хаотически. Причем некоторые из них ориентированы в направлении, удовлетворяющем уравнению Вульфа — Брегга. Рентгеновские лучи, отраженные от этих кристаллов, образуют в пространстве сплошные конические поверхности, в результате пересечения которых с узкой пленкой, свернутой в цилиндр, экспонируются линии, имеющие форму дуг. Для увеличения числа кристаллов, участвующих в отражении, и получения более четкой дифракционной картины образец во время съемки может подвергаться вращению. [c.78]

    В методе порошка, или дсбаеграмм, используют монохроматическое рентгеновское излучение. Поликристаллический образец помещают на пути узкого рентгеновского луча (рис. 5.7, а). Поскольку в порошке имеются кристаллы любой ориентации по отношению к лучу, всегда найдутся такие кристаллы, положение которых отвечает условию Вульфа — Брегга. В конечном итоге все те кристаллики в порошке, которые имеют соответствуюище межплоскостные расстояния ( 1, 2, 3,. ..,d , попадают по отношению к падающему лучу в отражающее (но не гасящее) положение. Отраженные лучи образуют конус со строго определенным углом расхождения. [c.118]

    В методе Лауэ используется неподвижный монокристалл и непрерывный (сплошной) спектр рентгеновского излучения, т. е. варьируется длина волны X. Монокристалл К (см. рис. V.1) работает как спектральный прибор из всего непрерывного спектра рентгеновского излучения Я < Ящах выбираются только те длины волны, для которых при заданной ориентации монокристалла, т. 0. при фиксированных выполняется условие Вульфа — Брегга. [c.113]

    Если в электронном микроскопе используется поглощение электронов для изучения внешней формы и размеров коллоидных частиц и макромолекул, то методы рентгенографии и электронографии при исследовании внутренней структуры коллоидных частиц и полимерных материалов основаны на диффракции рентгеновых лучей, или, соответственно, электронов. При регулярном расположении атомов, например в кристалле, интерференция рассеянных волн приводит к определенной системе диффракционных пятен. Положение пятен определяется законом Вульфа-Брэгга  [c.70]

    Метод Дебая — Шеррера. Данный метод позволяет выполнять ренггеноструктурные исследования с порошкообразным веществом. Пусть некоторое семейство плоскостей в кристалле образует с падающим пучком монохроматического рентгеновского излучения угол 0, удовлетворяющий уравнению Вульфа — Бреггов (рис. 57). Не меняя угла скольжения (т. е. сохраняя условие Вульфа — Брег-га), будем вращать кристалл вокруг оси первичного пучка. Отраженный пучок излучения опишет в пространстве конус с углом при вершине, равным 40. Другое семейство плоскостей этого же кристалла даст такой же конус, но уже с иным углом при вершине и т. п. Если на пути отраженных пучков излучения перпендикулярно первичному пучку поставить фотопластинку, то на ней зафиксируется ряд концентрических колец по числу семейств атомных плоскостей, отражающих рентгеновское излучение. [c.114]

    Эффективныйрадиусиона — это радиус сферы действия пона в данном кристалле. Он не является для данного иона (как и радиус атома) строго определенной величиной, так как зависит от типа связи и от координационного числа. Эффективные радиусы определяют из расстояний d между центрами соседних ионов. Эти расстояния определяются с большой точностью современными методами рентгеноструктурпого анализа (Вульф, Брэгги, Дебай и др.). Их приравнивают сумме радиусов ионов. Например, у Na l длина ребра элементарной ячейки найдена равной 0,562 нм, отк -да d= = 0,281 нм, у фторида натрия Л=0,231 нм и т. д. Однако, чтобы определить ионные радиусы, нельзя d просто делить пополам, как это делается при вычислении радиусов атомов в атомных решетках простых веществ. Надо знать, по крайней мере, радиус одного иона, найденный тем или другим способом. Наиболее надежное исходное значение было получено для иона F (0,133 нм) с помощью оптических методов, зная которое можно определить радиусы = 0,231—0,133 = 0,098 нм Гс,- = = 0,281—0,098=0,183 нм и т. д. Таблицы ионных радиусов приведены в справочной литературе. [c.160]

    В качестве простейшего и наиболее ясного примера использования этих явлений можно указать случай, иозволяюш пй вывести закон отран<ения рентгеновских лучей от поверхности кристалла — закон Брэгга—Вульфа. В самом деле, каждый атом или ион в кристалле действует в качестве центра, от которого излучение рассеивается во всех направлениях, совместимых с законами оптики. Однако излучение, рассеянное в направлении связи между двумя атомами, многократно усиливается рассеянием излучения в том же направлении другими атомами. Суммарная дифракция в избранном направлении составляет одно из брэгговских отражений. Другое применение, некоторые обоснования которого были даны в гл. VII, принадлежит Дебаю, Менке и Принсу опо позволяет установить распределение атомов в жидкости. Наконец, метод смешанных порошков, развитый независимо Гуллом, а также Дебаем и Шерером, позволил сэкономить большое количество труда. В этом методе рентгеновские лучи рассеиваются во всех направлениях маленькими частицами смеси кристаллов, причем структура одного из них (обычно каменной солп) долл<на быть известна. В этом случае измерение межъядерных расстояний производится относительным методом, который сводится к измерению диаметров дифракционных колец, принадлежащих изученному и неизученному рассеивающим веществам. [c.463]

    В методе Лауэ используется полихроматическое рентгеновское излучение. Если на пути пучка лучей поставить кристалл, то в нем всегда найдутся такие плоскости, для Которых при опредедгенных длинах волн будет выполняться уравнение Вульфа - Брэгга [c.169]

    После расшифровки рентгенограммы или дифрактограммы определяют брег-говские углы (01, 02,. ..), а затем по закону Вульфа - Брегга рассчитывают постоянные решетки соответствующих систем плоскостей ( / , 2, /3. ..) н параметры элементарной ячейки, после чего строят модель ячейки данного полимера. С этой целью по распределению электронной плотности устанавливают координаты всех атомов с учетом конфигурации и конформации макромолекулы. При невозможности применения расчетного метода используют шаровые модели Стюарта - Бриглеба и метод проб и ошибок . Для построения моделей ячеек применяют метод просвечивания одноосно ориентированных образцов, тогда как порошковый метод используют главным образом для качественной характеристики полимеров, а также лля определения размеров кристаллитов и степени кристалличности (рентгенофазовый анализ). [c.146]

    Е. С. Федоров одновременно с разработкой методики измерения кристаллов на двукружном гониометре разработал и систему соответствующих вычислений. Графические методы расчетов кристаллов нашли свое завершение в работах другого замечательного русского кристаллографа — Ю. В. Вульфа. [c.15]


Смотреть страницы где упоминается термин Вульфа метод: [c.118]    [c.11]    [c.25]    [c.105]    [c.401]    [c.401]    [c.278]    [c.105]    [c.78]    [c.38]   
Физическая химия поверхностей (1979) -- [ c.205 , c.221 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.429 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.350 ]




ПОИСК







© 2024 chem21.info Реклама на сайте