Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции нуклеофильного замещения белко

    К первому типу каталитических реакций в предыдущем разделе были отнесены реакции, катализируемые ионами водорода. Такой тип пуш-пульных механизмов, по-видимому, может проявляться и при образовании промежуточных комплексов с участием некоторых ферментов, которые не имеют простетических групп и строение активных центров которых обусловлено определенной последовательностью функциональных групп аминокислот пептидов белка. Ко второму типу реакций относились каталитические реакции нуклеофильного замещения у атома фосфора, катализируемые ионами металлов. Эти реакции, по-видимому, можно рассматривать как модель и прототипы реакций трансфосфорилирования — реакций, широко распространенных в живой природе. Как правило, подобные реакции протекают с участием ферментов, имеющих простетические группы, в состав которых обычно входят ионы двухвалентных металлов. [c.576]


    Реагенты, используемые для ацилирования белков, существенно различаются по структуре и реакционной способности. Эти реакции протекают по механизму нуклеофильного замещения. [c.367]

    Природа стадии, лимитирующей скорость, и соответствующего переходного комплекса пока не установлена. По аналогии с большим числом реакций карбонильной группы, при которых в ней происходит разрыв связи углерод—кислород, предполагается образование нестойкого тетраэдрического промежуточного соединения [58, 134]. Возникает интересный вопрос включение какой группы приводит к его образованию — молекулы воды или остатка Glu-270 Вторая возможность подразумевает ковалентное присоединение субстрата к белку и требует протекания второй реакции замещения, в которой происходит атака ацилфермента водой. Исходя из особенностей структуры, наиболее вероятен в качестве ковалентного промежуточного соединения ангидрид с участием остатка Glu-270. Однако нуклеофильная способность карбоксильной группы обычно невелика, а амин является плохой уходящей группой [58]. С другой стороны, есть основания полагать, что остаток Glu-270 как основание катализирует атаку воды по атому углерода карбонильной группы. [c.549]

    Взаимоотношение структуры и реакционной способности. Уходящая группа типа алкоксила влияет на скорость реакции лишь стерически и индукционно. На это указывает наблюдаемое взаимоотношение структуры и реакционной способности, которое объясняется обычными эффектами, свойственными неферментативным реакциям нуклеофильного замещения ([7, 62, 129] см. также табл. 27). Поэтому можно заключить, что уходящая группа, а именно метоксил в реакции (4.42), не сорбирована на белке. [c.158]

    Ускорение реакций нуклеофильного замещения у ацильной группы благодаря участию соседней гидроксильной группы имеет большое значение с биохимической точки зрения в химии аминоацил-РНК. Эфиры этого класса являются промежуточными соединениями при синтезе белка [284, 285]. Высокая свободная энергия гидролиза эфиров аминокислот растворимой РНК при нейтральных значениях pH [286—288] свойственна ьсем эфирам аминокислот и обусловлена существенными изменениями констант диссоциации образующихся аминокислот по сравнению с их эфирами [289]. Также могут быть рассмотрены амиды аминокислот [290]. [c.170]

    Серусодержащие аминокислотные остатки имеют важное значение в связи с особыми химическими свойствами серы. Высокая поляризуемость атома серы делает серусодержащие группировки особенно эффективными в реакциях нуклеофильного замещения (в качестве как замещаемых, так и замещающих группировок). Тиоловая группа цистеина является отличным нуклеофильным агентом. Даже тиоэфирная группа метионина обладает нуклеофильными свойствами, о чем свидетельствует ее способность к образованию сульфониевых производных типа 8-аденозилметионина. Цистеин легко окисляется в цистин, и эта реакция в белках служит единственным способом образования истинно ковалентной связи между разными полипептидными цепями или между остатками одной цепи. Такие дисульфидные связи при некоторых условиях могут вступать в обменные реакции, в результате которых происходит обмен радикалов, соединенных с атомами серы  [c.23]


    Дисульфидные связи расщепляют путем окисления, восстановления, с ПОМОЩЬЮ реакций нуклеофильного замещения (НЗОз , ВН4 , Н ) [40, 106] (см. также гл. 2). При окислении 5—5-связей образуются два остатка цистеиновой кислоты [160]. Дополнительные сульфогруппы придают молекуле белка заметную гидрофильность, повышая его растворимость в воде, в особенности в области низких pH. Однако окисление дисуль-фидных связей сопровождается модификацией других аминокислот и частичным гидролизом лабильных пептидных связей. Поэтому для введения сульфогруппы предпочитают проводить восстановительное расщепление дисульфидных связей, а затем мягкое окисление 5Н-групп реагентами ряда сультопов (внутренних сложных эфиров сульфокислот) (см. разд. 1.5.1.2 и [c.64]

    Важно отметить, что скорости всех этих реакций зависят от pH (р,Н8—9), и для того, чтобы реакция нуклеофильного замещения в ароматическом кольце протекала достаточно быстро, необходимо наличие по крайней мере двух групп НОг (в орто- или пара-положении). Вместо сульфогруппы (—50зН) в реакциях нуклеофильного замещения (1) аналогичным образом может участвовать атом фтора или хлора (например, в случае присоединения к белку 2,4-динитрофторбензола или пикрилхлорида). [c.150]

    Многие фосфорилазы ведут себя довольно загадочно. Например, мышечная гликогенфосфорилаза, катализирующая превращение гликогена (расщепление а-гликозидных связей) в а-О-глюкозо-1-фосфат, не обнаруживает ни способности катализировать парциальные реакции обмена, ни инверсии конфигурации, как этого можно было бы ожидать в случае реакции одноактного нуклеофильного замещения. Аналогичным образом при инкубировании фермента с глюкозо-1-фосфатом и арсенатом не происходит арсенолиза [18]. Возможно, это объясняется тем, что фермент не проявляет активности, пока не будут связаны оба субстрата. А это значит, что для функционирования активного центра фермента необходимо, чтобы между конформацией фермента и структурой двух субстратов установилось строгое соответствие, т. е. что активная конформация ферментного белка стабилизируется в присутствии субстратов. [c.100]

    Одной из важнейших вех в химии белков было введение Зангером [52, 200] 2,4-динитрофторбензола (ДНФБ) как реагента для определения и идентификации свободных аминогрупп в белках и пептидах. Рассматриваемая реакция заключается в нуклеофильном замещении атома фтора в ДНФБ аминогруппой белка, в результате чего образуется динитро-фенильное (ДНФ) производное белка условия проведения этой реакции таковы, что пептидные свяди белка не изменяются. Последующий гидролиз ДНФ-белка или ДНФ-пептида приводит к выделению свободных аминокислот и ДНф-нроизводных К-концевых аминокислот. ДНФ-производ-ные аминокислот представляют собой соединения ярко-желтого цвета, которые могут быть экстрагированы подходящими органическими растворителями, фракционированы хроматографически и определены колориметрически. Последовательность реакций может быть изображена следующей схемой  [c.374]

    Начальная стадия реакции Майяра состоит в образовании К-зайещен-ных гликозиламинов путем конденсации непротонированной аминогруппы аминокислот, пептидов или белков с гликозидным гидроксилом моносахарида по механизму нуклеофильного замещения  [c.106]

    В число наиболее давно известных и чрезвычайно широко изученных реакций замещения входят процессы замещения галогенов у углеродных атомов [36, 37]. Эта группа реакций является одним из наиболее важных методов химической модификации белков и заключается в алкилировании всех или некоторых нуклеофильных заместителей, содержащихся в молекуле белка, в зависимости от доступности этих заместителей, условий реакции и количества используемого реагента. В табл. VI-5 приводен ряд алифатических и ароматических галогенпроизводных, которые вводились во взаимодействие с белками, а также типичные условия, возможные направления реакций и пути использования этих реакций для исследовательских или промышленных целей. Среди галогенидов обычно наиболее реакционноспособны иодиды, затем — бромиды (обладающие почти столь же высокой реакционной способностью, что и иодиды), хлориды и, наконец, фториды. Этот ряд, однако, может быть обращен для некоторых ароматических соединений, поскольку, как ун е отмечалось, реакционная способность вещества RY зависит как от природы Y, так и от R. [c.335]

    При этой реакции е-аминогруппы остатков лизина в белке превра-ш,аются в гуанидиновые группы в результате взаимодействия с 0-метил-изомочевиной или 8-метилизотиомочевиной. Реакция гуанидилирования является, вероятно, нуклеофильным процессом замещения групп — ОСНя или — 8СНз в соответствующих производных изомочевины аминогруппой белка, как показано уравнением (У1-5) [c.348]


Смотреть страницы где упоминается термин Реакции нуклеофильного замещения белко: [c.575]    [c.149]    [c.550]    [c.332]    [c.270]    [c.352]   
Химические реакции полимеров том 2 (1967) -- [ c.331 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Белки реакции

Замещение нуклеофильное

Реакции замещения

Реакция нуклеофильного



© 2025 chem21.info Реклама на сайте