Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация ферментного белка

    Атомы многих металлов также стабилизируют пространственную конформацию ферментных и иных белков. Таким действием обладают катионы Са, 2п, Мп, Mg, Со, Сп, Ре + 2, иногда Ва и также трехзарядные катионы. Они обеспечивают сохранение третичной и (или) четвертичной структуры ферментов. Особенно часто встречается стабилизирующее действие иона кальция, который защищает конформацию а-амилазы, предохраняет от денатурации (и автолиза) трипсин, защищает лизоцим, бактериальные и грибные протеиназы, некоторые пептидазы. Металл, по-видимому, может стабилизировать фермент двумя путями входя в состав его активного центра (у истинных метал-лоэнзимов) или присоединяясь к различным иным участкам на поверхности белковой частицы. При стабилизации апоферментов, например ионами Са, вероятно образуются клешневидные связи между металлом и СОО-группами. [c.166]


    Специфичность ферментных белков, синтез которых контролируют гены, определяется последовательностью аминокислот в полипептидных цепях. Эта же последовательность определяет и пространственную структуру белка, так называемую конформацию (вторичную, третичную и четвертичную структуру). [c.436]

    Применение межмолекулярно сшитых ферментов для терапевтических целей преследует те же цели, что и в случае полимер-ферментных конъюгатов увеличение сроков циркуляции в кровяном русле, снижение иммуногенности и стабилизацию фермента при максимальном сохранении ферментативной активности. В отсутствие полимерной защитной оболочки достижение этих целей более сложно. В то же время нарушение нативной конформации белка при межмолекулярном сшивании обычно меньше, чем при модификации полимерами, содержание белка в конъюгате почти 100 %, а внутримолекулярные сшивки ответственны за наблюдаемую в ряде случаев стабилизацию. [c.199]

    Влияние кислотности среды на скорость ферментативных реакций обусловлено тем, что при изменении кислотности меняется конформация всей белковой молекулы фермента, в том числе изменяется конформация активного центра и его способность осуществлять катализ. При рН-оптимуме фермент находится в оптимальной для проявления каталитических свойств конформации. При небольшом отклонении величины кислотности от рН-оптимума наблюдается незначительное изменение конформации, носящее обратимый характер. При значительном отклонении от рН-оптимума (в сильнокислой и сильнощелочной среде) происходит необратимая денатурация ферментного белка, приводящая к полной утрате каталитической активности. [c.31]

    Многие фосфорилазы ведут себя довольно загадочно. Например, мышечная гликогенфосфорилаза, катализирующая превращение гликогена (расщепление а-гликозидных связей) в а-О-глюкозо-1-фосфат, не обнаруживает ни способности катализировать парциальные реакции обмена, ни инверсии конфигурации, как этого можно было бы ожидать в случае реакции одноактного нуклеофильного замещения. Аналогичным образом при инкубировании фермента с глюкозо-1-фосфатом и арсенатом не происходит арсенолиза [18]. Возможно, это объясняется тем, что фермент не проявляет активности, пока не будут связаны оба субстрата. А это значит, что для функционирования активного центра фермента необходимо, чтобы между конформацией фермента и структурой двух субстратов установилось строгое соответствие, т. е. что активная конформация ферментного белка стабилизируется в присутствии субстратов. [c.100]


    При образовании промежуточного комплекса, деформации частицы субстрата, ее активировании могут происходить и индуцированные изменения конформации самого ферментного белка. Этот момент чрезвычайно важен, и современные теории механизма энзиматического катализа представляют реакцию даже так, что белок, присоединяя субстрат под его влиянием, как бы приспосабливается к его форме, натягиваясь на субстрат подобно тому, как распрямляется и натягивается на руку перчатка. [c.80]

    Изучить структуру белка на самом простом уровне — значит определить его первичную структуру, т. е. последовательность аминокислотных остатков в полипептидной цепи, а также природу и положение поперечных связей. Вторичная структура белка, т. е. наличие и характер спирализации полипептидной цепи, в значительной степени зависит от первичной структуры. Она, кроме того, зависит от pH и ионной силы раствора, а также от тех свойств среды, которые влияют на водородные связи и гидратацию белка. Третичная структура белка возникает в результате дальнейшего изгибания и скручивания полипептидной цепи, уже имеющей вторичную структуру. В некоторых случаях вторичная и третичная структуры всецело определяются первичной структурой белка. Если такие белки подвергать воздействию повышенной температуры или обработать мочевиной, кислотой, щелочью или другими агентами, которые нарушают вторичную и третичную структуру, не затрагивая первичной, то возможно самопроизвольное восстановление их конформации. Примером подобных белков может служить фермент рибонуклеаза. В этом случае последовательность аминокислот в полипептидной цепи определяет даже положение дисульфидных мостиков, так что если после воздействия восстанавливающими агентами провести окисление в мягких условиях, то-образование поперечных дисульфидных связей происходит в тех же местах, где они были раньше. Другие ферменты необратимо денатурируются даже в относительно мягких условиях. В настоящее время не ясно, каким образом столь лабильная и высокоспецифичная структура, как третичная, возникает во время синтеза ферментного белка на поверхности рибосомы. [c.99]

    Изменение конформации ферментов. Изменение конформации, т. е. пространственного строения ферментного белка, происходит под действием неконкурентных ингибиторов и активаторов, которыми могут быть гормоны, промежуточные и конечные продукты ферментативных реакций, ионы металлов, лекарства (см. выше). Изменение конформации ферментов возможно и при изменении условий среды, например при повышении или снижении кислотности. [c.34]

    Белки состоят из длинных цепей остатков аминокислот, соединенных между собой пептидными связями (—СО—ЫН—). Каждый белок, каждая цепь обладают определенной конформацией, т. е. они свернуты специфически, что обусловливает их трехмерную (пространственную) структуру. Конформация белка в значительной мере определяет его химические, физико-химиче-ские и биологические свойства. Если ее нарушить, то это приводит к изменению и даже утрате некоторых свойств нативного протеина. Изменившийся продукт обычно называют денатурированным белком. Термин нативный не всегда означает, что состояние очищенного протеина идентично тому, в котором он находится в живой клетке. Даже при самом осторожном выделении неизбежно происходит разрыв слабых связей, которые в клетке соединяют молекулу белка с молекулами иных типов. Высоко-очищенные белки могут далеко не полностью соответствовать тем, которые действуют в организме. Несмотря на все трудности, связанные с выделением белков, сейчас вполне возможно получение их (даже в кристаллическом состоянии) с полным сохранением той ферментной, гормонной или иной активности, которая [c.22]

    Строго говоря, не сушествует независимых подструктур — вторичной и третичной, — а в процессе пространственной укладки полипептидной цепи в глобулу фермента происходит как скручивание, обусловленное силами притяжения и отталкивания различных ее элементов, так и их объединение в более или менее компактную глобулу. Использование понятий вторичной и третичной структуры белка относится к приближенным способам описания белковых молекул и является полезным при качественном анализе общих структурных проблем в той области, которая соответствует примерно 6—8 А разрешению ферментной глобулы. Для детального анализа отдельных конформаций (т. е. разрешений 2—3 А) этот метод непригоден совсем, и в данном случае правильнее было бы говорить только о конформациях отдельных единиц полипептидной цепи, не связывая их ни со вторичной, ни с третичной структурой. [c.88]

    Для многих стадий катализа PLP-зависимыми ферментами необходим перенос протонов, и каждый такой перенос влияет на следующую стадию реакции. Определенные стадии требуют изменений в конформации как субстрата, так и кофермента и ферментного белка. Например, для превращения аддукта в уравнении (8-28) в субстрат-коферментное шиффово основание необходима пространственная перестройка, которая может быть обусловлена поворотом вокруг одинарной связи, как показано в уравнении (8-28), или поворотом кофермеи-та [33, 35]. Заметим, что элиминируемая е-аминогруппа [уравнение (8-28)] является сильно основной. Часто полагают, что эта основная группа участвует на следующей стадии в отщеплении а-Н и его переносе на 4 -углерод. [c.232]


    Плоскость пиридинового цикла никотинамидных коферментов не коп-ланарна с почти плоским рибофуранозным кольцом, которое имеет почти перпендикулярное расположение, причем гликозидная связь находится в плоскости гетероцикла 1253]. Пиридиновый и пуриновый циклы пространственно сближены и, по-видимому, находятся на близких к парал-ле.1ьным плоскостях, что облегчает взаимодействие между атомами азота аминогруппы и других гетероциклов, возможно, за счет водородных связей, с активными центрами ферментного белка. О возможности внутримолекулярного взаимодействия пиридиновой и адениновой части в молекуле НАД получены некоторые данные электронных спектров [254], ПМР-спектров [255] и спектров флуоресценции [256], из которых следует, что НАД в водном растворе находится в свернутой конформации. Однако по данным спектров ПМР высокого разрешения такая конформация НАД быстро превращается в развернутую [257, 258]. [c.317]

    Многие исследователи считают, что определяющая роль в термофилии принадлежит белкам, в первую очередь ферментным. С этих позиций основные температурные точки термофилов зависят от конформации одного или нескольких ключевых ферментов при минимальной температуре роста происходит переход от жесткой неактивной конформации белковых молекул к конформации с ограниченной гибкостью оптимальная температура роста определяет наиболее благоприятное конформационное состояние ферментных белков при максимальной температуре начинаются нарушения конформации белков и снижение их ферментативной активности, а выше этой температуры рост прекращается вследствие тепловой денатурации белков. [c.136]

    Конформация Е- ферментного белка имеет сайты, специфичные к ионам К" , и два иона К+ присоединяются к ионсвязывающим центрам фосфорилированного белка. [c.312]

    По современным представлениям, Ма , К -АТФаза является типичным липидзависимым ферментом для формирования его функционально-активной конформации необходимы кислые липиды. Показано, что мембранные гликолипиды, локализованные преимущественно в наружной половине бислоя, обеспечивают правильную ориентацию Ма , К -АТФазного комплекса относительно плоскости мембраны (т.е. они отвечают за проявление векторных свойств фермента). Вместе с тем остается неясным, какова специфическая роль мембранных фосфолипидов в обеспечении транспортной функции Ма, К -АТФазы. По-видимому, функционирование центров связывания нуклеотидов и катионов на молекуле фермента не зависит от липидов, тогда как для осуществления конформационных перестроек в ферментном белке важна его связь с мембранными липидами. Кривые, описывающие зависимость ферментативной активности от концентрации липида, имеют сигмоидную форму, что свидетельствует о кооперативном характере связывания липидов с белком. Однако абсолютная потребность фермента в тех или иных фосфолипидах (или их полярных головках) экспериментально не доказана. Так, опыты по ферментативному превращению одних фосфолипидов в другие (например, фосфатидилсерина в фосфатидилэтаноламин) в препаратах мембраносвязанной Ка" , К+-АТФазы показали, что фермент может функционировать без отрицательно заряженных фосфолипидов, но с уменьшением молекулярной активности. [c.92]

    Сера играет большую роль в структуре клеток, так как она входит в состав белков в виде серосодержащих аминокислот цис-тина, метионина и др. Сера обеспечивает конформацию, т. е. пространственную конфигурацию ферментных белков, связывая части полипептидной цепи —S—S-мостиками. Она входит в состав очень реактивных сульфгидрильных соединений (содержащих свободную SH-rpynny), являющихся источниками водорода при восстановительных реакциях. Тип их трансформации можно видеть на примере превращения цистеина в цистин  [c.35]

    Поскольку активный центр определяет и специфичность и каталитическую активность фермента, ои должен представлять собой структуру определенной степени сложности, приспособленную для тесного сближения и взаимодействия с молекулой субстрата или по крайней мере с теми ее частями, которые нег осред-ственно участвуют в реакции. Первоначально предполггалссь, что в каждой молекуле фермента имеется много активных центров, однако сейчас стало ясным, что в большинстве случаев на каждую молекулу приходится только один или два активных центра. Поверхность любого белка состоит из множества разнородных химических групп, принадлежащих боковым цепям аминокислот. Любая из них может играть в молекуле фермента ту или иную роль, влияя на конформацию фермента и на его взаимодействие с субстратом в силу своих химических особенностей и даже просто своим присутствием (стерический эффект). Значение функциональных групп белка для структуры и каталитического действия ферментов очень многообразно. Атомы кислорода, азота, серы участвуют в образовании водородных связей и комплексов с металлами. Кислые и основные группы в 3 2 Е И С И Г Л ОСТИ от состояния и диссоциации функционируют в активных центрах ферментов в качестве кислотных и основных, нуклео- и электро-фильных катализаторов. Эти группы могут действовать непосредственно на субстрат или изменять своим электростатическим воздействием реакционноспособность соседних групп молекул фермента. Аминные, имндозольные, гидроксильные, тиоловые и некоторые другие группы во многих ферментных реакциях выполняют функции промежуточных акцепторов и переносчиков [c.137]

    ЛИТЬ по образованию продуктов катализируемой им реакции. Большинство используемых ферментных меток способно за 1 мин при обычных температуре и давлении превращать в продукты 10 молекул субстрата в расчете на одну молекулу фермента. Каталитическая эффективность фермента сильно зависит от его трехмерной структуры (конформации), Пространственная структура фермента, как и любого белка, поддерживается многочисленными нековалентными взаимодействиями, такими, как гидрофобные и водородные связи, ионные контакты, а также ковалентными дисульфидными связями. Трехмерная структура фермента обеспечивает близкое соседство определенных аминокислотных остатков в положениях, наиболее выгодных для осуществления катализа. Нековалентные химические связи непрочны и легко разрушаются или ослабляются под влиянием тепловой энергии или дополнительных нековалентных взаимодействий, возникающих, например, при связывании ионов, хао-тропных агентов, детергентов, липидов и т. д. Известно, что присоединение к ферменту другой молекулы (скажем, аллосте-рического эффектора) в области, удаленной от активного центра (т. е. каталитического центра), может вызвать конформацион-ную перестройку, изменяющую пространственное расположение аминокислотных остатков в этом центре. Изменения в некова- лентных взаимодействиях, приводящие к новой, необычной конформации фермента, способны существенно повлиять на каталитическую активность. Подобная конформационная гибкость становится одной из помех при использовании фермента в качестве метки. Однако эта же гибкость полезна для разработки иммуноферментного анализа без разделения компонентов, основанного на вызываемых антителами изменениях в конформации конъюгата [лиганд — фермент]. Другое преимущество применения ферментов в качестве меток обусловлено наличием в их молекулах многочисленных функциональных групп (аминогрупп, сульфгидрильных, карбоксильных, карбамоильных, остатков тирозина), через которые можно ковалентно присоединять молекулы лигандов. [c.12]


Смотреть страницы где упоминается термин Конформация ферментного белка: [c.167]    [c.286]    [c.84]    [c.485]    [c.250]    [c.17]    [c.318]    [c.65]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ферментные яды



© 2025 chem21.info Реклама на сайте