Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золы металлов

    Легко догадаться, что в данном случае в микроскоп наблюдается эффект Тиндаля. Так как дифракционная картина вокруг частицы намного превышает по размерам саму частицу, то ультрамикроскоп дает более высокое разрешение, чем обычный микроскоп. В случае золей металлов оно достигает 0,005 мкм, т. е. на два порядка величины выше разрешения обычного микроскопа. Поскольку в от- [c.36]


    Анализ уравнения Рэлея показывает также, что максимальное светорассеяние происходит в системах с размером частиц г< (2- 4) 10 м, что соответствует коллоидной дисперсности (рис. 24.1). При размерах частиц более 0,1/. световой волны возрастает роль процессов отражения света. В растворах исчезает опалесценция и появляется мутность (например, в суспензиях, грубых взвесях). С другой стороны, из уравнения Рэлея видно, что с уменьшением размеров частиц интенсивность светорассеяния ослабевает пропорционально величине 1/ . Ту область размеров частиц, для которой интенсивность рассеянного света максимальна, называют рэлеевской областью. Для золей металлов ввиду сильного поглошения ими света уравнение (24.1) неприменимо. [c.390]

    Ожижение угля с помощью синтез-газа и чистого водорода. Полубитуминозные угли из указанных в табл. 1 четырех угольных районов штата Вайоминг, содержащие 4—22% (масс.) золы, 12—25% (масс.) влаги и 0,6—3,4% (масс.) серы (в расчете на уголь без золы и влаги), были подвергнуты ожижению и десульфированию под действием синтез-газа в растворе антраценового масла и без добавки катализатора. Основные элементы, содержащиеся в золе этих углей, даны в табл. 2 [15]. Некоторые нз присутствующих в золе металлов оказывали каталитическое действие на реакции деполимеризации и ожижения углей. [c.330]

    Дисперсная фаза необратимых систем, т. е. систем, сухой остаток которых не способен самопроизвольно диспергироваться, слабо взаимодействует с дисперсионной средой. Такие системы относятся к лиофобным (в случае водной дисперсионной среды — к гидрофобным). Это золи металлов, суспензии оксидов железа и алюминия и др. [c.66]

    Определенное количество металла теряется в виде металлического тумана — золя металла, который образуется в результате реакций диспропорционирования или диспергирования катодного металла в электролите. [c.471]

    Механическое дробление. Механическое дробление осуществляется в различного рода мельницах (для получения коллоидной дисперсности променяют коллоидные мельницы), с помощью ультразвука, в вольтовой дуге (для получения золей металлов) и т. д. [c.78]

    Результат опыта. При возникновении в жидкости электрической дуги образуются густые облака золя серебра или меди. Полученные таким образом золи металлов дают четкий конус Тиндаля. [c.156]

    Очень часто коллоидные системы окрашены. Окраска драгоценных или полудрагоценных камней обусловлена присутствием в них ничтожных количеств тяжелых металлов и их окислов в состоянии коллоидной степени раздробления. Например, в естественных рубинах такими примесями являются соединения железа, в изумрудах — соединения хрома. Так называемое рубиновое стекло, изготовлявшееся еще М. В. Ломоносовым, представляет собою стекло с весьма малой примесью коллоидного золота (0,0001 %) Очень часто встречаются и окрашенные коллоидные системы с жидкой дисперсионной средой. Особенно яркой краской обладают золи металлов. Это объясняется большой разностью плотностей, а следовательно, и показателей преломления дисперсной фазы и дисперсионной среды. [c.43]


    Эти особенности агрегативной неустойчивости лиофобных систем, например золей металлов, заставили (Гарди, 1901 г.) предположить, что устойчивость лиофобных золей обусловлена электрическим зарядом их частиц, обнаруживающимся в явлениях электрофореза. После того как эта догадка подтвердилась, стало ясно, что механизм устойчивости и природа лиофобных дисперсных систем иные, чем лиофильных. [c.260]

    Периодические коллоидные структуры образуют многие вирусы, бактерии, монодисперсные золи металлов, золи пятиокиси ванадия, латексы. [c.319]

    Золи металлов, пульпы, взвеси, ил [c.382]

    Подобно коллоидной частице сульфида мышьяка построены частицы золей металлов и гидроксидов металлов. Некоторые вещества в коллоидной степени дисперсности способны адсорбировать на своей поверхности много молекул растворителя, которые образуют сольватную оболочку (если дисперсионная среда — вода, то гидратную). Сольватные оболочки, так же как и адсорбированные ионы, обусловливают устойчивость коллоидных растворов, так как препятствуют сближению коллоидных частиц. [c.137]

    Лиофобные (в случае воды — гидрофобные) золи почти не адсорбируют молекул растворителя. К ним относятся золи металлов, сульфидов, различных солей и др. Частицы лио-фобных золей не имеют сольватных оболочек. Деление золей на лиофильные и лиофобные является условным. [c.180]

    Устойчивые золи металлов получают также при электролизе водных растворов солей. При этом образуются высокодисперсные катодные осадки, которые переводят в органический растворитель (обычно жидкий углеводород), содержащий ПАВ. [c.239]

    Получение устойчивых золей металлов методом электролиза (Натансон) основано на электролитическом выделении металлов в виде высокодисперсных катодных осадков из водных растворов солей и последующем переводе их в органический растворитель. Схема получения золей сводится к следующему. В нижнем слое двуслойной ванны помещают 2—3%-ный раствор электролита, а в верхний наливают растворитель— обычно жидкий углеводород, к которому добавлено около I % поверхностно-активного вещества, например олеиновой кислоты. [c.103]

    Явление коллоидной защиты используется при изготовлении ряда фармакологических препаратов так, были предложены защищенные белком золи металлов (колларгол и др.). [c.187]

    Этим фактором в значительной мере определяется стабильность золей металлов. Но он действует, очевидно, лишь при малых концентрациях, когда столкновения действительно только парные. Типичными являются, например, концентрации золотых золей О - —10- з моль частиц п 1 л (для сравнения концентрация молекул газа при н. у. составляет - 4-10-2 моль/л). [c.259]

    Взвеси в природных водах, золи металлов в воде [c.12]

    Дисперсии (взвеси) в природных водах, золи металлов в воде, бактерии [c.13]

    Уравнение Рэлея справедливо для непроводящих частиц для золей металлов характерны более сложные закономерности. Переменное электромагнитное поле световой волны генерирует в частицах проводника электрический ток часть энергии волны при этом превращается в джоулеву теплоту и происходит значительное поглощение света. Оно возможно также и в случае непроводящих частиц, например, золей берлинской лазури, являясь причиной их яркой окраски. [c.41]

    В это же время Фарадей разработал методы получения золей металлов (например, Аи, Ag) и показал, что коллоидные частицы в них состоят из чистых металлов. [c.21]

    Установлено, что поглощение монохроматического света золями, как и в случае молекулярных растворов, подчиняется закону Ламберта—Бера. Для золей металлов характерна избирательность поглощения, являющаяся функцией дисперсно- [c.44]

    Т/Ж Золи, суспензии взвеси Золи металлов, гидровзвеси [c.21]

    Золи с металлическими частицами очень сильно поглощают свет, что обусловлено генерацией в частицах электрического тока, большая часть энергии которого превращается в теплоту. Установлено, что для золей металлов характерна селективность поглощения, зависящая от дисперсности. С ростом дисперсности максимум поглощения сдвигается в сторону коротких волн. Эффект влияния дисперсности связан с изменением как спектра поглощения, так и спектра рассеяния (фиктивного поглощения). Например, золи золота, радиус частиц которых составляет около 20 нм, поглощают зеленую часть спектра ( 530 им), н поэтому они имеют ярко-красный цвет, прн радиусе же частиц 40—50 нм максимум поглощения приходится на желтую часть спектра ( 590—600 нм) и золь кажется синим. Интересно, что очень высокодисперсный золь золота, поглощая синюю часть спектра ( 440—450 нм), имеет желтую окраску, как и истинный раствор соли, например, хлорида золота АиС1з. Кривые световой абсорбции золей серы по мере увеличения днсиерсности также постепенно передвигаются к кривой абсорбции молек /ляриых растворов серы. Это подтверждает наличие непрерывного перехода некоторых свойств от дисперсных систем к истинным растворам. Подобное изменение окраски в зависимости от дисперсности можно наблюдать у ряда других золей. [c.266]


    Седиментационные потоки частиц могут быть разрушены конвд с-ционными потоками, возникающими из-за разности температур и связанной с этим разностью плотностей в разных участках объема жидкости. Устойчивость седиментационных потоков против разрушения конвекционными потоками будет определяться дисперсностью частиц системы. Расчеты показывают, >гго для полного разрушения седиментационного потока в высокодисперсных золях металлов в водной среде достаточно колебания температуры на 0,001 °С в час. В полидисперсных системах влияние кон- [c.55]

    Основным красящим веществом нефти являются асфа.1ьтены. От концентрации и дисперсности последних зависит величина оптической плотности нефти. Частицы асфальтенов имеют черный цвет и сильно поглощают световые лучи. В этом отношении они близко стоят к частицам золей металлов [ 3 ] и суспензий сажи [ 24 ], по глои ение света которыми описывается законом Ламберта - Бера [ 13 ]. Этот закон учитывает размер частиц дисперсной фазы  [c.17]

    Суспензоиды и молекулярные коллоиды. Сус-пензоиды — высокодисперсные гетерогенные системы (лиофильные или лиофобные), неустойчивые и необратимые, частицы которых представляют собой агрегаты атомов или молекул, отделенные границей раздела фаз от окружающей среды. К ним относятся золи металлов, их оксидов, гидроксидов, различных неорганических солей И Др. Частицы этих золей имеют внутреннюю кристал- [c.72]

    Метод Бредига из-за высоких температур, создающихся около вольтовой дуги, применим тблько для получения гидрозолей. Сведберг усовершенствовал этот метод, сделав его пригодным для получения органозолей. Для этого вместо постоянного тока Сведберг применил переменный ток высокой частоты, а сам процесс электрораспыления проводил путем погружения электродов в металлический порошок, лежащий на дне сосуда в дисперсионной среде. Электрораспыление в этом случае происходит в результате проскакИвания искры между отдельными частицами порошка. При таком способе сильно уменьшается термическое разложение окружающей среды и можно получить золи металлов в различных органических жидкостях. [c.253]

    Для золей металлов все закономерности намного сложнее. Для них отмечается аномалия как в поглощении света, так и в рассеянии. При этом для таких золей характерно значительное поглощение света, что определяет интенсивность их окраски. Для обоих оптических эффектов наблюдаются максимумы, зависящие от длины волны и степени дисперсности золя. Соответственно изменяется и их окраска в белом свете. Так, золи золота с частицами приблизительно сферической формы радиусом 20 нм имеют максимум абсорбции при К = 530 нм, что отвечает абсорбции зеленых лучей. Соответственно они приобретают красную окраску. ЗЪли золота с радиусом 30 нм имеют максимум абсорбции при К — 600 нм. При этом золь приобретает синюю окраску. Приведенные данные находятся в достаточно хорошем согласии с теоретическими расчетами Ми. [c.397]

    Типичные гидрофобные коллоидные системы (золи металлов, серы, AsjSa, Ag l и т. п.) даже при их длительном хранении не застудневают .  [c.271]

    Примерами отрицательно заряженных частиц могут служить золи металлов Ли, Ад, Р1, 5Ь, Си сульфиды металлов Аз, 5Ь, ей, РЬ пятиокись ванадия, сера кислоты кремневая, оловянная кислотные красители (красное конго, бензпур-пурин и др.), мыло крахмал, пектин, гумус мастика гуммигут, латексы гуммиарабик, белки в щелочной среде, почвенные частицы. [c.78]

    Общей характеристикой коллоидных растворов является свойство их дисперсной фазы взаимодействовать с дисперсионной средой. В этом отношении различают два типа золей. У одних золей частицы не имеют сродства к растворителю, слабо с ним взаимодействуют и образуют вокруг себя только тонкую оболочку из молекул растворителя такие коллоиды называются лиофобными (от греческого слова phobia — ненависть) в частности, если дисперсионной средой является вода, то такие системы называются гидрофобными, например золи металлов железа, золота, сернистого мышьяка, хлористого серебра и др. В системах, у которых между диспергированным веществом и растворителем имеется сродство, частицы приобретают более объемную оболочку из молекул растворителя. Такие системы получили название лиофильных (от греческого слова philia — любовь), а в случае водной дисперсионной [c.113]

    В это же время М. Фарадей разработал методы получения золей металлов (например, Аи, Ag) и показал, что коллоидные частицы в них состоят из чистых металлов. Таким образом, ко второй половине XIX в. сложился ряд представлений о жидких коллоидных растворах и других дисперсных системах. Обобщение в 60-х годах XIX в. этих взглядов, формулировка основных коллоидно-химических идей и введение термина и понятия коллоиды принадлежат Грэму. Изучая физико-химические свойства растворов, в частности диффузию, он обнаружил, что вещества, не кристаллизующиеся из раствора, а образующие студневидные аморфные осадки (АЬОз, белки, гуммиарабик, клей) обладают весьма малой скоростью диффузии, по сравнению с кристаллизующимися веществами (Na I, сахароза и др.), и не проходят через тонкие поры, например пергаментные мембраны, т. е. не диализируют, по терминологии Грэма. Основываясь на этом свойстве, Грэм разработал метод очистки коллоидов от растворенных молекулярных веществ, названный им диализом (см. главу II). После того, как был найден способ получения чистых объектов исследования, началось бурное развитие коллоидной химии. [c.18]

    Установлено, что поглощение монохроматического света золями, как и в случае молекулярных растворов, подчиняется закону Ламберта — Беера. Для золей металлов характерна избирательность поглощения, являющаяся функцией дисперсности с увеличением последней максимум поглощения сдвигается в сторону более коротких волн. Поэтому высокодисперсные золи золота (/- = 20 нм), поглощающие преимущественно зеленую часть спектра, имеют интенсивно-красную окраску с увеличением размеров частиц до 50 нм золи золота приобретают синюю окраску в проходящем свете и буро-лиловую при боковом освещении. Интересно отметить, что, по наблюдениям Сведберга, золи золота чрезвычайно высокой дисперсности обладают желтой окраской, весьма сходной с окраской ионов Аи + в растворах АиСЦ. Точно так же органозоли щелочных металлов весьма близки по окраске к парам этих металлов, т. е. и здесь можно проследить непрерывный переход от коллоидных растворов к молекулярным или ионным. [c.40]

    В рассмотренных выше теориях не учитывают существования сольватного слоя жидкости с измененными свойствами на поверхности частиц. Между тем, вряд ли можно представить себе систему с полным отсутствием взаимодействия между веществами дисперсной фазы и дисперсионной среды, даже в случае типично гидрофобных коллоидов (например, золей металлов). Ориентация молекул в сольватных слоях приводит к свойствам, характерным для квазитвердых тел — высокой вязкости, упругости, сопротивлению сдвигу — и препятствующим взаимопроникновению слоев при сближении частиц. Наряду с кинетическими факторами (резкое уменьшение скорости вследствие высокой вязкости), следует учитывать и термодинамические необходимость затраты работы на преодоление упругих сил или на частичную десорбцию молекул сольватной оболочки при утончении зазора между частицами. Затрата работы приводит к увеличению потенциальной энергии, к подъему нисходящей ветви кривой II(Н) в области малых И. Влияние сольватных слоев должно резко искажать потенциальные кривые при к с1 где ё — расстояние от поверхности до границы скольжения жидкости. [c.259]


Смотреть страницы где упоминается термин Золы металлов: [c.53]    [c.288]    [c.32]    [c.370]    [c.391]    [c.105]    [c.116]    [c.318]    [c.20]    [c.13]   
Теории кислот и оснований (1949) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Золь

Мер золит

золы



© 2025 chem21.info Реклама на сайте