Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость и коагуляция лиофобных золей

    III. Устойчивость дисперсных систем. Сюда входит, с одной стороны, изложение учения о лиофильных, самопроизвольно образующихся термодинамически устойчивых коллоидных дисперсиях, включая дисперсии мицеллообразующих ПАВ. С другой стороны, здесь приводится рассмотрение общих закономерностей обеспечения и нарушения устойчивости лиофобных дисперсных систем с описанием роли теплового движения частиц и представлений о расклинивающем давлении по Дерягину в соответствии с представлениями Ребиндера рассматривается структурно-механический барьер, образованный адсорбционными слоями, как фактор стабилизации, особенно концентрированных дисперсных систем. Этот раздел содержит также описание особенностей стабилизации и разрушения конкретных дисперсных систем с различным агрегатным состоянием фаз аэрозолей, гидрозолей и суспензий, эмульсий, пен, включая изложение теории стабилизации и коагуляции гидрофобных золей электролитами. [c.13]


    Теоретические представления о причинах, обусловливающих устойчивость лиофобных золей, получили дальнейшее развитие в работах Б. В. Дерягина и Л. Д. Ландау. Согласно теоретическим воззрениям и экспериментальным данным Дерягина, пленка жидкости, заключенная между двумя погруженными в нее твердыми телами, оказывает на них расклинивающее давление и тем самым препятствует их сближению. Действие быстро возрастает с утончением пленки и в большой степени понижается от присутствия электролитов. С этой точки зрения коагуляции частичек препятствует расклинивающее действие разделяющих их пленок. Введение электролитов в золь приводит к изменению двойного электрического слоя, сжатию его диффузной части и изменению прочности разделяющих частицы пленок и, тем самым, к нарушению стабильности золя. Стройно развитая математическая теория стабильности и коагуляции Дерягина и Ландау приводит к строгому физическому обоснованию правила валентности Шульце — Гарди и вместе с тем подводит физическую основу под эмпирические закономерности, обнаруженные Оствальдом. [c.341]

    При введении в раствор золя небольших концентраций высокомолекулярных веществ устойчивость золей значительно повышается, что выражается в повышении порога коагуляции. На этом основано явление защиты лиофобных золей. Механизм защитного действия зависит от образования адсорбционного слоя введенного вещества на поверхности частиц гидрофобного золя. Защитными веществами могут служить в водной среде белки, углеводы, пектины. Защитное действие измеряется так называемым защитным числом — количеством миллиграммов защитного вещества, которое необходимо добавить к 10 мл исследуемого золя, чтобы защитить его от коагуляции. [c.268]

    В фундаментальных работах Б. В. Дерягина и его школы развиты представления об основном термодинамическом факторе устойчивости коллоидных систем — расклинивающем давлении в тонких слоях жидкости — и экспериментально изучены дисперсионные межмолекулярные силы. В.месте с Л. Д. Ландау им создана современная теория устойчивости и коагуляции лиофобных золей электролитами независимо и несколько позднее эта теория была развита Е. Фервеем и Дж. Овербеком. Б. В. Дерягиным совместно с Н. В. Чураевым, Г. А. Мартыновым, Д. В. Федосеевым, 3. М. Зориным сделан крупный вклад в развитие учения о поверхностных силах, устойчивости тонких слоев, зародышеобразовании, массопереносе в дисперсных системах и в другие области исследования коллоидно-поверхностных явлений. [c.11]


    Б. П. Дерягин (1945) разработал теорию устойчивости и коагуляции лиофобных (гидрофобных) золей, согласно которой сольватные (гидратные) оболочки вокруг ядра коллоидных мицелл, обусловленные сольватацией (гидратацией) ионов в диффузном слое, обладают упругими свойствами. Упругие силы жидких сольватных оболочек, препятствующие слипанию частиц, получили, по Б. П. Дерягину, название расклинивающего давления. Это название подчеркивает, что упругие сольватные прослойки между сближенными твердыми поверхностями действуют механически, как бы расклинивая поверхности. [c.325]

    Примером систем, устойчивость которых можно объяснить сольватацией, являются гидрозоли З Ог и гидратов окисей некоторых многовалентных металлов. Эти системы, поскольку они не подчиняются обычным закономерностям коагуляции лиофобных золей, [c.281]

    Последнее предположение само по себе не очевидно. Оно связано с тем подтвержденным рядом экспериментов фактом, что свойства жидкости вблизи лиофобной новерхности отличаются от объемных только изменениями концентрации растворенных ионов и молекул и наличием электрического поля, но ничем другим. Этим упрощается расчет взаимодействия поверхностей, отделенных тонкой прослойкой, что и позволило построить последовательную количественную теорию устойчивости лиофобных коллоидов. Эта теория за более чем 30-летний период получила широкое распространение и была с успехом применена к объяснению как коагуляции лиофобных золей электролитами, так и многих других явлений. [c.30]

    Анализ большой совокупности данных о коагуляции лиофобных золей электролитами и их смесями свидетельствует о том, что электрический фактор устойчивости имеет существенное и даже решающее значение. Одновременно, однако, этот анализ показывает, что коагуляция реальных коллоидных растворов почти никогда не протекает по чисто концентрационному механизму. Это утверждение вытекает из ря.г а соображений. [c.152]

    В нашу задачу пе входит обсуждение многочисленных теорий коагуляции, развитых различными исследователями в конце прошлого века — начале нынешнего. Они представляют лишь- исторический интерес. В настоящее время общепринята физическая теория коагуляции лиофобных золей Дерягина — Ландау — Фервея — Овербека [18—22], в которой степень устойчивости системы определяется из баланса молекулярных и электростатических сил (см. гл. I). Хотя детальная разработка этой теории еще не завершена, она, благодаря принципиально верной трактовке роли поверхностных сил разной природы, позволила объяснить целый ряд коллоидно-химических явлений. [c.110]

    Нарушение устойчивости растворов ВМС при введении электролитов нельзя отождествлять с коагуляцией лиофобных коллоидов. Коагуляция золей происходит при введении малых концентраций электролита и представляет собой обычно необратимое явление. Выделение из раствора ВМС происходит при добавлении относительно больших объемов электролита, на 3...5 порядков превышающих порог коагуляции и не подчиняющихся правилу Шульце—Гарди. Процесс является обратимым, и после удаления из осадка электролита ВМС снова способно к растворению. [c.368]

    Для объяснения зависимости коагуляции лиофобных золей от концентрации дисперсной фазы необходимо учитывать не только рассматриваемые в физической теории устойчивости парные столкновения коллоидных частиц, но также и их коллективные взаимодействия. Чтобы упростить расчеты, реальный золь моделировали [90] идеализированной системой, состоящей из совокупности бесконечных плоскопараллельных пластин (толщины Ь), расположенных на равных расстояниях к друг от друга в растворе электролита. Полагали, что быстрая коагуляция коллоидных растворов происходит при условии [87] [c.155]

    В 1945 г. Б. В. Дерягин, развивая эту идею, разработал теорию устойчивости и коагуляции лиофобных золей, по которой сольватные (гидратные) оболочки вокруг ядра мицелл, обусловленные сольватацией (гидратацией) ионов в диффузном слое, обладают упругими свойствами. [c.132]

    Проведен общий анализ критерия устойчивости концентрированных лиофобных золей и на его основе сделаны качественные заключения о влиянии содержания дисперсной фазы на закономерности коагуляции смесями электролитов. [c.50]

    Устойчивость лиофобных золей против коагуляции возрастает в присутствии ВМВ белков, полисахаридов и т. п. Это проявляется в повышении значений порогов коагуляции у защищенного золя и неподчинении правилу Шульце—Гарди. [c.439]

    Механизм коагуляции лиофобных коллоидов и нарушения устойчивости ВМС различны. Коагуляция золей происходит обычно в результате сжатия двойного электрического слоя и уменьшения или полного исчезновения электрического заряда на поверхности частицы, являющегося в этом случае основным фактором устойчивости. Выделение из раствора ВМС при добавлении электролита объясняется уменьшением растворимости ВМС в концентрированном растворе электролита. Поэтому по аналогии с подобными явлениями в растворах низкомолекулярных [c.368]

    По сравнению с лиофобными золями лиофильные золи более агрегативно устойчивы. Если для коагуляции гидрофобного золя достаточно очень незначи- [c.205]


    Свойства разбавленных эмульсий (С< <0,1% об). Такие эмульсии, как правило, тонкодисперсны и близки по свойствам к лиофобным золям. В таких эмульсиях из-за малых размеров капель наблюдаются броуновское движение, диффузия, рассеяние света и т. д., они являются седиментационно устойчивыми. Их агрегативная устойчивость так же, как в лиофобных золях, определяется наличием диффузных электрических слоев. Коагуляция под действием электролитов подчиняется правилу Шульце-Гарди. К разбавленным эмульсиям приложима теория [c.247]

    Теория обосновывает эмпирические закономерности Шульце — Гарди, Оствальда. Теория устойчивости лиофобных золей развивается в новых исследованиях Б. В. Дерягина, а также в работах А. Д. Ше-лудко с сотрудниками, Ю. М. Глазмана, И. М. Дыкмана и др. Теория Дерягина дает возможность обосновать закономерности коагуляции лиофобных золей электролитами и их смесями при низких и средних значениях потенциала, [c.94]

    В эксперимсп льном изучении и длите о>ной оживленной дискуссии о причинах стабилизации гидрофобных золей участвовали Г. Шульце и У. Гарди, Г. Мюллер, Г. Фрейндлих, Г. Кройт, А. И. Рабинович и др. В работах Б. В. Дерягина и сотр. были сформулированы представления об основном термодинамическом факторе устойчивости коллоидных систем—расклинивающем давлении в тонких слоях жидкости и о главных его составляющих. Б. В. Дерягиным совместно с Л. Д. Ландау была создана современная теория устойчнвоств в коагуляции лиофобных золей электролитами независимо и несколько позднее эта теория была развита Е. Фервеем и Дж. Овербеком. [c.13]

    Аналогичный метод использован и для изучения влияния концентрации дисперсной фазы лиофобных золей на их устойчивость, при различных концентрациях электролитов. Учет коллективного-взаимодействия коллоидных частиц позволяет объяснить существенные различия в закономерностях коагуляции электролитами разбавленных и нарушении устойчивости концентрированных лиофобных золей. В частности, было найдено, что при постоянной объемной концентрации дисперсной фазы устойчивость концентри рованных систем с увеличением размера частиц проходит через максимум. Этот вывод был экспериментально подтвержден Отте-вилем 111оу. Если же численная концентрация частиц остается неизменной, то устойчивость системы с увеличением размера частиц, снижается монотонно. Одновременно для больших сферических частиц и толстых пластинчатых частиц характерно наличие глубокого вторичного минимума на потенциальных кривых, вследствие чего процессы дальней агрегации должны быть особенно распространены в низкодисперсных системах. [c.296]

    Таким образом, теория ДЛФО даже в первоначальном виде, несмотря на ряд неизбежных на первых порах упрощений, дала возможность объяснить основные закономерности коагуляции лиофобных золей электролитами. Дальнейшее развитие теории позволило обосновать явления гетерокоагуляции, пептизации (Френс, Овербек), образование периодических коллоидных структур (Ефремов, Усьяров), закономерности коагулирующего действия смесей электролитов, влияние концентрации дисперсной фазы на устойчивость (Духин, Лессик). Количественный учет молекулярного конденсатора (штерновского слоя) выявил возможность коагуляции по безбарЬерному механизму (Мартынов, Муллер). [c.19]

    Существование двойного электрического слоя на поверхности коллоидных частиц служит основным фактором устойчивости ионостабилизированных (лиофобных) золей. Как уже отмечалось, современная физическая теория устойчивости и коагуляции ионостабилизированных коллоидных систем основана на учете межмолекулярного притяжения и электростатического отталкивания, действующих между частицами золя. Согласно этой теории, коллоидная система устойчива в том случае, когда благодаря силам электростатического отталкивания (которые появляются при сближении коллоидных частиц и взаимном перекрытии их диффузных ионных атмосфер) возникает энергетический барьер, не позволяющий частицам подойти на расстояние, где преобладают силы молекулярного притяжения. Снижение энергетического барьера приводит к коагуляции системы. Полная энергия взаимодействия определяется алгебраической суммой энергии молекулярного притяжения и электростатического отталкивания. [c.135]

    Несмотря на большое количество работ, проблема устойчивости дисперсных систем не решена и поныне. Это объясняется многообразием природы сил, обеспечиваюш,их стабильность коллоидного раствора, а также трудностью или невозможностью в ряде случаев их теоретического расчета или непосредственного экспериментального определения. Устойчивость дисперсий обеспечивается существованием специальных стабилизирующих факторов сил отталкивания ионо-электростатического, молекулярпо-сольватаци-онного и (в случае коллоидных частиц, окруженных адсорбированными слоями полимеров) стерического происхождения. Наибольшие успехи достигнуты в области исследования ионостабилизированных дисперсных систем, связанные с созданием физической теории устойчивости лиофобных золей [2, 3] и ее дальнейшим развитием [4]. Эта теория обосновывает почти все встречающиеся закономерности коагуляции лиофобных золей неорганическими электролитами и их разнообразными смесями. [c.33]

    В учебнике изложены основные сведения о классификации дисперсных систем очистка дисперсных систем и растворов высокОглолекулярных соединений их молекулярно-механические свойства поверхностные явления адсорбция электрокинетические явления устойчивость и коагуляция лиофобных золей структурно-кинетические свойства дисперсных систем и растворов высокомолекулярных соединений их оптические свойства полуколлоиды эмульсии пены аэрозоли. [c.2]

    Б. В. Дерягин развивает теорию коагуляции лиофобных золей, в основе которой лежат два положения представление о силах ван-дер-ваальсов-ского межмолекулярного притяжения и представление о силах отталкивания, возникающих при сближении коллоидных частиц, несущих однотипные двойные электрические слои. При этом представления, связывающие устойчивость коллоидных систем с величиной дзета-потенциала, считаются несостоятельными (известны случаи, при которых наступлению коагуляции предшествует не падение, а возрастание дзета-потенциала). [c.313]

    Лиофобные золи. Мы уже видели, что обязательными условиями устойчивости лиофобных золей являются очень зшшя размер частиц, наличие у них электричргких зарядов, одинаковых по знаку, и сольватация частиц. Первое предохраняет их от осе-даНИЯ, "второе и третье — от укрупнения в результате слипания, (коагуляции). Своим происхождением заряды коллоидных частиц обязаны адсорбционным процессам заряд появляется у частицы вследствие того, что частица данного коллоида пре имущее ственно (или избирательно) адсорбирует из раствора ионы того или иного вида в зависимости от природы коллоидного веш ества и от условий опыта. Чтобы выяснить ближе характер зтой адсорбции, обратимся прежде всего к результатам экспериментального изу- J чения структуры коллоидных растворов. [c.515]

    Теория устойчивости лиофобных золей ДЛФО рассматривает процесс коагуляции как результат одновременного действия ван-дер-ваальсовых сил притяжения и электростатических сил отталкивания между частицами. В зависимости от соотношения этих сил в тонкой прослойке жидкости между сближающимися частицами возникает либо положительное расклинивающее давление, препятствующее их соединению, либо отрицательное, приводящее к угончешио прослойки жидкости и коагуляции. Теория позволила рассчитать молекулярную и электростатическую 6  [c.147]

    Наибольший успех теории дальнодействующих поверхностных ил электростатической и молекулярной природы связан с тем обстоятельством, что на ее основе оказалось возможным количественно объяснить устойчивость лиофобных коллоидов и роль электролитов в их дестабилизации. Лиофобные золи — зто коллоиды, частицы которых относительно слабо взаимодействуют с молекулами дисперсионной среды. Их взаимодействие поэтому может быть сведено к силам электростатического отталкивания, возникающим при перекрытии ионных атмосфер, и силам дисперсионного взаимодействия. Это было предположено уже в статье Кальмана и Вильштетера [1] и положено в основу теории медленной коагуляции слабо заряженных и высокодисперсных коллоидов одного из авторов [2, 3] данной монографии. Практически нулевая скорость коагуляции обеспечивает лгрегативную устойчивость дисперсной системы, т. е. устойчивость ло отношению к процессам агрегирования. [c.259]

    В основу теории ДЛФО было положено предположение, что в силу термодинамической неустойчивости лиофобных золей их агрегатив-ная устойчивость может иметь лишь кинетический характер, а устойчивое состояние следует трактовать как замороженное состояние с практически нулевой скоростью коагуляции. Причиной такой устойчивости является то, что в коллоидных растворах в отличие от обычных молекулярных или истинных растворов дальнодействующие поверхностные силы способны при определенных условиях создавать достаточно высокий потенциальный барьер, резко уменьшающий вероятность сближения частиц или даже практически целикомисклю-чающий зту возможность. Поэтому важнейшее место в решении задачи об устойчивости любого либфобного золя теория ДЛФО отводит анализу силовых и потенциальных кривых получаемых суперпозицией электростатического отталкивания и молекулярного притяжения. [c.260]

    Коллоидные растворы коагулируют пои невысокой концентрации электролитов. Однако устойчивость их может быть значительно повышена путем создания дополнительно на поверхности частиц адсорбционных слоев с повышенными структурно-механическими свойствами. Стабилизация лиофобного золя за счет добавления незначительной массы высокомолекулярных (лиофильных) соединений (желатина, казеината натрия, мыла, белков и пр.), способствующих образованию на поверхности частиц адсорбционно-сольватных слоев, полностью предотвращая коагуляцию электролитами, называется защитным действием стабилизаторов. Для количественной оценки защитных свойств различных веществ введено понятие золотого числа , под которым понимают ту минимальную массу стабилизирующего вещества (в мг), которую следует добавить, чтобы защитить 10 мл красного золя золота от коагуляции с появлением синей окраски при добавке к золю 1 мл 10%-ного раствора хлорида натрия. Например, золотое число желатины равно 0,008. Это значит, что 0,008 мг ее защищает 10 мл золя золота от коагуляции 1 мл 10%-ного раствора Na l. [c.160]


Библиография для Устойчивость и коагуляция лиофобных золей: [c.6]    [c.113]   
Смотреть страницы где упоминается термин Устойчивость и коагуляция лиофобных золей: [c.296]    [c.111]    [c.155]    [c.155]    [c.8]    [c.336]    [c.147]    [c.152]    [c.153]    [c.159]    [c.11]   
Смотреть главы в:

Коллоидная химия -> Устойчивость и коагуляция лиофобных золей

Коллоидная химия -> Устойчивость и коагуляция лиофобных золей




ПОИСК





Смотрите так же термины и статьи:

Золь

Золь коагуляция

Коагуляция

Лиофобные коагуляция

Мер золит

Устойчивость золей

Устойчивость лиофобных

золы



© 2025 chem21.info Реклама на сайте