Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гафний в сплавах

    Несмотря на исключительно многообразные возможности применения редких металлов и их сплавов, выделим здесь лишь некоторые основные области их применения. Это прежде всего ядерная техника, где необходимы такие металлы, как бериллий, ниобий и цирконий и др., в качестве материалов оболочки ядерного горючего в различных типах реакторов. Эти металлы отличаются малым сечением захвата тепловых нейтронов, высокой твердостью при рабочих температурах, хорошей теплопроводностью, устойчивостью к коррозии и т. д. Галлий и литий предложены, кроме того, в качестве рабочих жидкостей [последний— при условии его отделения от изотопа зЫ почему ) ]. Благодаря свойству значительно поглош,ать нейтроны гафний индий и европий используют для изготовления регулирующих стержней. Значительное количество редких металлов потребляет производство стали. Наряду с чистыми легирующими компонентами (например, Мо, V, , V) ряд редких и др. металлов используется в качестве раскислителей (например, редкоземельные элементы, кремний). Для современной авиационной промышленности и космической техники необходимы жаростой- [c.589]


    Металлические и металлоподобные соединения. Порошки титана, циркония и гафния поглощают водород, кислород и азот. При этом растворенные неметаллы переходят в атомарное состояние и принимают участие в образовании химической связи. Наряду с сильно делокализованной (металлической) возникает локализованная (ковалентная) связь. Благодаря этому система приобретает повышенную твердость и хрупкость. Способность Т1, Zг и Н1 поглощать газы используется для получения глубокого вакуума, удаления газов из сплав эв и т. д. [c.531]

    Металлический гафний применяется для изготовления стержней ядерных реакторов, регулирующих мощность благодаря большой способности к захвату нейтронов. Из гафния изготовляют также нити и катоды электронных трубок, поскольку он тугоплавок и обладает способностью к высокой электронной эмиссии. Сплавы, содержащие гафний, используются для изготовления турбореактивных двигателей, ракет и спутников. [c.369]

    Титан немного тяжелее алюминия, но в три раза прочнее его к тому же титан и его сплавы обладают высокой коррозионной стойкостью, жаростойкостью. Они используются в качестве конструкционного материала в самолетостроении, ракетной технике и т. д. Этим требованиям отвечают также легкие магний-циркониевые сплавы. Цирконий почти не захватывает тепловые нейтроны, поэтому он используется в качестве конструкционного материала для атомных реакторов. Использование циркония в ядерной технике потребовало тщательного разделения циркония и гафния, так как гафний в этом случае является вредной примесью. [c.127]

    Металлический цирконий и сплавы. Металлический цирконий, не содержащий гафния, и его сплавы применяются преимущественно в атомной энергетике для изготовления оболочек тепловыделяющих элементов (ТВЭЛов), теплообменников и других конструкций ядерных реакторов, которые не должны поглощать, нейтроны и обладать высокой стойкостью против действия ядерных излучений при повышенной температуре. [c.308]

    Сплавы с металлами. В сплавах циркония и гафния с другими металлами можно выявить следующие основные закономерности. В структурах с различными координационными числами межатомные расстояния, принимаемые за атомный диаметр, также разные. В. М. Гольдшмидт показал, что для металлов при переходе от структур с координационным числом 12 к структурам с координационными чис- [c.301]


    Гафний применяют для изготовления регулировочных стержней и защитных устройств атомных реакторов. Сплав, состоящий из 80% ТаС и 20%Н С, наиболее тугоплавок из твердых веществ (т. пл. 3990 °С), изделия из того материала обладают максимальной термостойкостью. [c.513]

    Титан благодаря высокой термической и коррозионной устойчивости — важный конструкционный материал. Он используется для строительства самолетов, подводных лодок и пр. Цирконий (освобожденный от гафния) и его некоторые сплавы применяются в атомной энергетике в качестве конструкционных материалов, отражающих нейтроны. Масштабы применения гафния более ограничены он также используется в атомной энергетике, но как поглотитель нейтронов применяется в электронной технике (катоды телевизионных трубок). [c.500]

    Получение металлов высокой чистоты. В связи с развитием новых отраслей техники потребовались металлы, обладающие очень высокой чистотой. Например, для надежной работы ядерного реактора необходимо, чтобы в расщепляющихся материалах такие опасные примеси, как бор, кадмий и другие, содержались в количествах, не превышающих миллионных долей процента. Чистый цирконий — один из лучших конструкционных материалов для атомных реакторов — становится совершенно непригодным для этой цели, если в нем содержится даже незначительная примесь гафния. В используемом в качестве полупроводника германии допускается содержание не более одного атома фосфора, мышьяка или сурьмы на десять миллионов атомов металла. В жаропрочных сплавах, широко применяемых, например, в ракетостроении, совершенно недопустима даже ничтожная примесь свинца или серы. [c.335]

    Так, аргон используют в качестве защитной атмосферы (предохранение от окисления) при выплавке таких металлов, как уран, торий, германий, цирконий и гафний, а также при получении чистого кремния. На практике широко распространен способ электросварки (а также наплавки и резки) металлов в защитной атмосфере инертного газа —обычно аргона (аргонно-дуговая сварка титановых, алюминиевых, магниевых и др. сплавов, меди, вольфрама, нержавеющих сталей и т. д.). Чистые гелий и аргон—непревзойденные защитные газы при работе с химически малоустойчивыми веществами, легко поддающимися окислению. [c.544]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Сплавы титана с металлами. К числу наиболее существенных факторов, определяющих взаимодействие в металлических системах и поддающихся сценке, относятся соотношение размеров атомов, электронное строение и число валентных электронов, тип кристаллической структуры. Сходство ЕО взаимодействии титана, циркония и гафния с другими металлами обусловлено аналогичным строением их атомов, совпадением структур обеих полиморфных модификаций, а небольшое различие — тем, что атом титана имеет несколько мень- [c.237]

    Свойства сплавов внедрения циркония и гафния [c.299]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    Фазы внедрения образуются при взаимодействии титана (как и циркония, и гафния) с углеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньще, чем водорода. Поскольку атомные радиусы углерода и азота больше, чем у водорода, предельный состав фаз внедрения в этом случае отвечает формуле ТЮ и (Т Мх= 0,56-1)1 т.е. заполняются только октаэдрические пустоты в ГЦК решётке. Эти фазы относятся к наиболее тугоплавким. Следует отметить, что температуры плавления карбидов и нитридов существенно вьппе, чем самих металлов. А сплав 80% Т1С + 20% НЮ плавится рекордно высоко - при 4215 С. Эго самый тугоплавкий из всех известных в настоящее время материалов. Карбиды и нитриды титана и его аналоги к тому же обладают высокой твердостью, жаростойкостью, исключительно коррозионностойки и инертны по отношению к расплавленным металлам. [c.119]

    В мире совре.менных материалов керамике принадлежит заметная роль, обусловленная широким диапазоном ее разнообразных физических и химических свойств. Керамика не окисляется и устойчива в более высокотемпературной области, че.м металлы, например, те.мпература плавления карбида гафния (3930°С) на 250° выше, чем у вольфрама. У распространенных керамических. материалов (оксидов алюминия, магния, тория) тер.мическая устойчивость намного превышает устойчивость большинства сталей и сплавов. [c.51]


    В том случае, если металл образует устойчивый гидрид, последний можно с успехом использовать при синтезе сплава вместо чистого металла. Устойчивы гидриды следующих металлов щелочные, щелочноземельные, редкоземельные, актиноиды титан, цирконий, гафний, ванадий, ниобий, тантал, палладий. Гид- [c.2143]

    В области производства специальных сталей и сплавов гафний еще не нашел широкого применения, однако он является полезной легирующей примесью [231. Легирование гафнием сплавов на основе меди, никеля и железа повышает температуры их рекристаллизации. Добавки гафния в пределах от 0,05 до 10% полезны при изготовлении жаростойких и электроустойчивых железных сплавов. Испытываются также ниобиевые сплавы, легированные гафнием. Работы советских и зарубежных исследователей по изучению фазовых диаграмм двойных и тройных металлических систем, содержащих гафний, свидетельствуют о большом интересе к этим сплавам. [c.13]

    Применяют для ФО циркония в гафнии, сплавах титана, алюминия, магния, ниобия, молибдена, чугунах, сталях, рудах [ПО, 216, 372, 519, 681], фосфоритах [4П], минералах циркония, тория, урана [591], фторидных средах [616], ФТТО в сплавах на основе магния, алюминия [374], металлургических флюсах [227], Nb ls [189], ФО в водно-органической среде при анализе сплавов типа ЦАМ, никеля, содержащих вольфрам, рений [592, с. 102—108]. [c.170]

    Цирконий н сплавы hij его основе применяют как конструкционные материалы в энергетических ядерных реакторах и в химическом машиностроении, в э.иектровакуумиых приборах и в оборонной 7ехнике. Применение гафния пока довольно ограничено. [c.275]

    Титан, цирконий и гафний используются как легирующие добавки к специальным сплавам. Они улучшают механические свойства, повышают пластичность, твердость и коррозионную стойкост 5 сплавов. Порошки титана, циркония и гафния используются как поглотители газов (геттеры). Более легкий по сравнению с другими -металлами титан широко применяется также для изготовления турбинных двигателей, корпусов самолетов и морских судов. Особо чистый цирконий используется в качестве конструкционного материала для термоядерных реакторов. Гафний обладает исключительной способностью к захвату нейтронов стержни из этого металла применяются в ядерной технике. Оксиды циркония, титана и гафния находят применение в качестве материалов дл>1 изготовления тугоплавких и химически стойких тиглей и электродов МГД-генераторов. Ti02 используется в качестве красителя (титановые белила). Из карбидов титана и циркония изготовляют шлифовальные круги. Титанат бария (ВаТЮз) широко исполь.-зуется в пьезоэлектрических датчиках. [c.514]

    В чистом виде гафний, подобно другим элементам подгруппы титана,— металл, по внешнему виду похожий на сталь. При низкой температуре устойчив. При высокой температуре, наоборот, химически очень активен. Это является общей чертой металлов Ti, 2г и Ш при нагревании они энергично соединяются с галоидами, кислородом, серой, углеродом и азотом. Карбид Н1С очень тугоплавок (/ л 3890°). Карбиды металлов подгруппы титана общей формулы ЭС (Т1С, 2гС и НГС) — очень твердые кристаллы металлического вида, применяются при изготовлении твердых сплавов. Сплав, состоящий нз 80%ДЮ и 20% НГС, отличается высокой тугоплавкостью 4215°). Высокая температура плавления характерна и для двуокиси гафния Н10а (2770°). [c.464]

    Карбиды титана, циркония и гафния проводят электрический ток, легко сплавляются с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре они довольно инертны при высоких же температурах ведут себя подобно соответствующим элементарным металлам (реагируют с галогенами, кислородом, серой, азотом, а также кислотами и солевыми окислителями с образованием продуктов, аналогичных получающимся при действии на соответствующие металлы). Подобного типа соединения титан, цирконий и гафний образуют с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.85]

    В последние десятилетия для новой техники (ядерной, ракетной, полупроводниковой) потребовались металлы высокой чистоты, в которых содержание примесей не превышает миллионных долей процента. Например, такие требования предъявляются к содержанию опасных примесей (бора, кадмия и др.) в расщепляющихся материалах. Цирконий становится непригодным как конструкционный материал для атомн ых реакторов, если он содержит примеси гафния. В жаропрочных сплавах для ракетостроения недопустимы примеси серы и свинца. Г ер-маний может быть использован как полупроводник, если на десять миллионов его атомов приходится не более одного атома примесей фосфора, мышьяка или сурьмы. [c.263]

    Сверхтвердые сплавы состоят из карбидов и силицидов вольфрама, хрома, титана, тантала. Сцементированные кобальтом, никелем или железом, они обладают твердостью, приближающейся к твердости алмаза (9,6 по шкале Мооса) и в особенности карбосилицид титана. Такие сплавы имеют чрезвычайно высокую температуру плавления (например, температура плавления сплава тантала с карбидом гафния 3950° С) и при нагревании твердость их не снижается. [c.353]

    Водород обратимо растворяется в титане, цирконии и гафнии. Предельное содержание водорода в них отвечает формуле ЭН а- С углеродом эти металлы взаимодействуют при высокой температуре и образуют очень твердые металлоподобные вещества переменного состава. Карбиды типа ЭС образуют твердые растворы с металлами, друг с другом и с карбидами других элементов. Сплав 20% Hf и 80% ТаС плавится при 4215° С. Карбиды Ti , Zr , Hf плавятся соответственно при 3140, 3630 и 3890° С. С уменьшением углерода в карбиде, например у титана до Ti o, . твердость и жаростойкость постепенно уменьшаются при обычной температуре они ведут себя подобно элементарным металлам. [c.331]

    Использование титана, циркония, гафния и их соединений. По коррозионной стойкости даже в морской воде титан превосходит все нержавеющие стали и цветные металлы. Поэтому он и его сплавы находят различное применение в машиностроении, авиа- и судостроении, турбостроении, в производстве вооружения. Добавка 0,1% Т1 резко повышает качество стали. Сталь с добавкой 2г используется в изготовлении броневых плит и щитов, стволов орудий и пр. Эти металлы связы-вакзт азот и кислород, растворенные в стали, что предотвращает образование раковин и сообщает ей однородность. [c.332]

    Гафний Hf (лат. Hafnium, от древнего названия Копенгагена — Hafnia). Г.— элемент IV группы 6-го периода периодич. системы Д. И. Менделеева, п. и. 72, атомная масса 178,49. Положение Г. в периодической системе было предсказано Д. И. Менделеевым. Д. Костер и Г. Хевеши в 1923 г. обнаружили Г. в норвежской руде. Г.— типичный рассеянный элемент. Он не образует собственных минера.яов и в природе сопутствует цирконию. Г.— серебристо-белый металл. Чистый Г. пластичен, легко поддается холодной и горячей обработке. По химическим свойствам сходен с цирконием. В соединениях проявляет степень окисления-(-4. Металлический Г. на воздухе покрывается пленкой оксида НГОг.При нагревании реагирует с галогенами, а при высоких температурах с азотом и углеродом, образуя тугоплавкие HfN и Hf . Растворяется в плавиковой и концентрированной серной кислоте. Водные растворы солей Г. легко гидролизуются. Применяется Г. для изготовления катодов электронных ламп, нитей ламп накаливания, жаростойких железных и никелевых сплавов, в атомной технике и др. [c.36]

    Перспективно применение НГ и его соединений в жаропрочных сплавах для самолетостроения и ракетной техники. Сплавы титана, легированные гафнием (до нескольких процентов), выдерживают нагревание до 980 . Сплавы тантала с гафнием устойчивы против окисления до 1650°. Сплавы МЬ и Та с НГ (2—10%) и У (8—10%) хорошо обрабатываются, коррозионно стойки, высокопрочны выше 2000° и вблизи абсолютного нуля. Уникальные свойства имеют жаропрочные материалы на основе карбида и нитрида гафния. Твердый раствор карбидов НГ и Та, плавящийся выше 4000°, — самый тугоплавкий керами ческий материал. Йз него готовят тигли для выплавки тугоплавких металлов и детали реактивных двигaтeлeiV 15, 16, 72, 731. [c.309]

    С этой целью сплавы легируют сравнительно небольшим количеством более сильных карбидообраэователей, чем молибден (т. е. элементов, расположенных в периодической системе левее молибдена). Обычно в качестве таких элементов используют титан, цирконий и гафний. При введении этих элементов в молибден образуются соответствующие карбиды вместо карбида молибдена (М02С), что приводит к некоторому уменьшению хрупкости. Однако при этом не достигается полной пластификации, т. е. смещения порога хладноломкости ниже комнатной темпе- итуры. Впрочем, необходимо учитьшать, что сплавы Мо легируют Т1 и 2г не для понижения порога хладноломкости (не очень значительного), а для повышения их жаропрочности. [c.42]

    Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии. [c.139]

    Аналогичными свойствами обладают соединения титана как и циркония, гафния с кремнием (Т18 г), бором (ТШ, ТШг, Т12В) и другими неметаллами. Все вышеуказанные металлиды имеют структуру типа КаС1 и друг с другом образуют твёрдые растворы. Ценные физикохимические свойства металлидов элементов подгруппы титана определяют их большое значение для техники. Ыапример, вышеуказанный сплав карбидов титана и гафния, имеющий самую высокую температуру плавления. [c.120]

    Целью создания никелевых ДКА является повышение жаропрочности и снижение высокотемпературной ползучести никеля и его сплавов. В качестве упрочняющей фазы использутот оксиды, так как их стабильность в нике.ле при высоких температурах выше, чем других ту гоплавких соединений. Имеются сведения об изготовлении ДКМ с дисперсными карбидами Ti , ТаС. Наиболее широко для упрочнения никеля используют оксиды тория и гафния. [c.120]


Смотреть страницы где упоминается термин Гафний в сплавах: [c.531]    [c.541]    [c.85]    [c.88]    [c.16]    [c.412]    [c.138]    [c.121]    [c.240]    [c.120]   
Ионообменные разделения в аналитической химии (1966) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Гафний



© 2025 chem21.info Реклама на сайте