Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение водорода масштабы

    Способ получения водорода из воды за счет применения электричества, разумеется, давно и хорошо известен. Электрическая диссоциация воды на водород и кислород применяется в течение многих лет [11, 15], поэтому большое число всевозможных конструкций электролитных камер, электродов, типов электролитов,, газосборных устройств и другого оборудования реализовано в промышленном масштабе. [c.230]


    Хотя реакция присоединения хлора к олефинам была открыта еще в 1795 г., однако промышленное значение получило оно лишь в начале нашего века. В настоящее время в крупных промышленных масштабах осуществлено хлорирование этилена, пропилена, ацетилена и других ненасыщенных углеводородов. Получаемые при этом 1,2-дихлорэтан, 1,2-дихлорпропан, 1,1,2,2-тетрахлорэтан находят широкое применение в качестве растворителей, фумиганта и полупродуктов в синтезе таких важных соединений, как хлорвинил, этилен-диамин, трихлорэтилен и т. д. Присоединение галогенов к олефинам и ацетилену сопровождается образованием продуктов дальнейшего замещения водорода на хлор и другими реакциями. [c.133]

    При переработке нефти в моторные топлива в качестве побочного продукта получается крекинг-газ. Попутные газы нефтепереработки ранее не использовались для производства водорода. Последнее объясняется тем, что получение водорода из этих газов, содержащих значительное количество непредельных углеводородов и серы, связано с большими трудностями. Кроме того, на нефтеперерабатывающих заводах ранее не было потребности в дополнительных ресурсах водорода. В связи с расширением масштабов применения гидрокрекинга нефтепродуктов в нефтеперерабатывающей промышленности в последнее время возникла проблема получения водорода на основе собственного сырья — попутных газов нефтепереработки. [c.38]

    Важным применением экстракции в нефтяной промышленности является выделение бутадиена-1,3 (сырья для синтеза каучука) пз смеси углеводородов С4, получаемых при отнятии водорода от бу-танов. Эти соединения кипят при близких температурах, поэтому разделение их путем ректификации невозможно. Для разделения в промышленном масштабе применяется водный аммиачный раствор ацетата меди концентрацией 3—3,5 моль/л [74, 89]. Другие растворители оказались менее пригодными [98]. В аммиачном растворе диолефины и углеводороды Д1 енового типа (бутадиен) образуют соединения с ионом меди Си" . В дальнейшем раствор очищается от других растворенных в нем углеводородов путем продувания газом с высоки.м содержанием бутадиена, а затем производится десорб- [c.402]

    В связи со значительными затратами на сжижение и транспортирование жидкого хлористого водорода трудно предполагать, чтобы в ближайшее время он нашел применение в масштабах, близких к масштабам использования жидкого хлора. [c.511]


    За последние несколько лет появились новые взгляды о возможности использования гидрогенизационных методов в нефтепереработке и предложены многочисленные процессы гидрогенизационной обработки нефтепродуктов. В следующих разделах этой главы рассматриваются достижения последнего времени в области изучения химизма этих процессов, применяемых катализаторов и технологического оформления. Кратко рассмотрены важнейшие результаты гидрогенизационной обработки, дополнительные источники водорода и возможности применения процессов, разработанных для облагораживания ка1 сырой нефти, так и различных нефтяных фракций. Эти процессы, частично уже осуществленные в промышленном масштабе, основываются на применении водорода для улучшения качества различных нефтяных фракций или промежуточных нефтезаводских потоков, в том числе газа, прямогонного и крекинг-бензинов, лигроинов, средних дистиллятов, газойлей — сырья для каталитического крекинга, смазочных масел, парафинов, нефтяных остатков и кокса. [c.120]

    Если предположить, что в последующие 20—30 лет доля водородной энергетики возрастет в значительной степени, то водород станет доступным в избытке. Например, он будет применяться в качестве топлива для самолетов и части наземного транспорта. Автомобили могли бы работать на водороде непосредственно (в двигателях внутреннего сгорания) либо через посредство электрических топливных элементов. Однако это только наиболее очевидные способы применения водорода. Его производство в больших масштабах на основе источников атомной и солнечной энергии сделало бы водород дешевым по сравнению с другими видами топлива и совершенно не загрязняющим окружающую среду. [c.475]

    Технологические процессы, в которых под давлением водорода осуществляются химические преобразования органических молекул, играют важнейшую роль в нефтеперерабатывающей и нефтехимической промышленности и по масштабам применения занимают первое место в мире среди каталитических химических процессов. [c.5]

    Удаление серы из дистиллятного сырья представляло собой неизмеримо более легкую задачу, чем получение искусственного жидкого топлива из угля или смол. Естественно, что она могла быть решена применением простых и дешевых установок среднего давления в одну ступень и использовапием более дешевых и легко регенерируемых, хотя и менее активных катализаторов. Сначала гидроочистке подвергались более легкие дистилляты, затем все более тяжелые, включая газойли и смазочные масла. Было заманчиво при гидроочистке тяжелого сырья осуществить и его деструкцию. Так, с конца пятидесятых годов в опытных масштабах, а с начала шестидесятых — в промышленных масштабах стали развиваться процессы гидрокрекинга, имевшие целью повысить выход наиболее цев(ных нефтепродуктов — бензина и дизельного топлива, а также улучшить качество сырья для каталитического крекинга. Процессы гидрокрекинга не были возвратом к многоступенчатой технологии деструктивной гидрогенизации смол и углей, хотя и носили в себе основные черты последней. Видимо, поэтому к ним и применили новый термин — гидрокрекинг. В процессах деструктивной гидрогенизации разделение их на ступени и применение высоких давлений было вынужденной мерой, так как катализаторы были дороги, не регенерировались и были слишком чувствительны к ядам. В современных процессах гидрокрекинга применяются новые, более активные катализаторы, многие из которых могут регенерироваться. Процессы осуществляются максимум в две ступени и при меньшем давлении водорода. Многие из вновь разработанных катализаторов обладают [c.11]

    Такие низкокипящие сжиженные газы, как жидкие кислород, азот и метан, давно нашли широкое применение в химии, машиностроении, металлургии, приборостроении, ракетной технике, атомной энергетике и ряде других отраслей промышленности. В последние годы наблюдается значительное расширение масштабов производства и применения также жидкого водорода. [c.5]

    Масштабы производства лг-ксилола несравненно меньше, чем других его изомеров. Мировое производство ж-ксилола, вероятно, не превышает 50—100 тыс. т [42]. Несмотря на довольно большое число предложений по выделению л -ксилола, промышленное применение нашли только два способа сульфирование и экстракция смесью фтористого водорода и трехфтористого бора. [c.260]

    Для получения полистирола могут быть использованы все известные технологические способы полимеризации. Но практическое применение получили метод блочной полимеризации и метод полимеризации в эмульсиях. В промышленном масштабе стирол полимеризуют в присутствии инициаторов — органических перекисных соединений (перекись бензоила, перекись водорода) и надсернокислых солей. [c.116]


    Появление пассивируемых коррозионностойких сталей послужило также поводом для разработки анодной защиты. В сильно кислых средах высоколегированные стали, как и углеродистые, практически не поддаются катодной защите, потому что выделение водорода затрудняет необходимое снижение потенциала. Между тем с применением анодной защиты можно пассивировать и удерживать в пассивном состоянии также и высоколегированные стали. Ц. Эделеану на примере насосной системы из хромоникелевой стали в 1950 г. первый показал, что анодная поляризация корпуса насоса и подсоединенных к нему трубопроводов защищает от разъедания концентрированной серной кислотой [33], Неожиданно большая протяженность зоны анодной защиты может быть объяснена высоким сопротивлением поляризации пассивированной стали. Локк и Садбери [34] исследовали различные системы металл — среда, которые могут быть применены для анодной защиты. В 1960 г. в США уже эксплуатировалось несколько установок анодной защиты, например для складских резервуаров-хранилищ, для сосудов-реакторов в установках сульфонирования и нейтрализации. При этом достигалось не только увеличение срока службы аппаратов, но и повышение степени чистоты продукта, В 1961 г. впервые была применена в крупнопромышлен-ных масштабах анодная защита для предотвращения межкристаллитного [c.35]

    В нашей стране возросли применение, а с ним и выработка, растительных масел, которые ранее временами не находили сбыта. Гидрогенизация жиров сдерживала рост цен на мыло. Она сильно химизировала переработку жиров, явилась большим вкладом и в развитие отечественной химической промышленности. В области технологии органических веществ в громадном масштабе стал осуществляться новый каталитический процесс. Сильно развилось производство водорода. В 1912 г. химическая промышленность России (без жировой) выработала 56,5 тыс. водорода, средней ценой по 79 к." . В 1913 г. в России было выработано 770 тыс. п. (12,6 тыс. т) салолина. Расход водорода [c.419]

    Водородное горючее особенно привлекательно для бытового использования, когда основная масса горючего расходуется для получения тепла. Расчеты [78, 854]. показывают, что при многих вариантах использования водорода для бытовых целей покрытие бытовых энергетических иужд достигается с меньшими затратами, чем в случае применения электричества, даже если водород получать электролизом воды, В случае снабжения потребителей водородом, полученным из любого вида горючего даже с КПД 60 7о. что уже освоено промышленностью в крупном масштабе, 56 % исходного горючего доводится до потребителя, что в два раза эффективнее, чем при использовании электроэнергии. Применение водорода для бытовых целей в значительной степени технически подготовлено. Водород легко и полностью окисляется при очень низких температурах на поверхности катализаторов. Известны и испытаны различные типы керамических горелок, в которых каталитический элемент состоит из пористой керамической пластины, под которой или внутри которой происходит горение водорода. Регулируя покачу газа иа пластину, можно в широких пределах менять температуру, необходимую для приготовления пищи [449], При этих условиях температура горения настолько низка, что полностью исключает появление оксидов азота. Единственным продуктом сгорания на кухне будет водяной пар. [c.563]

    Применение. По масштабам использовапия, разнообразию примепения в различных отраслях пром-сти H l и С. к. занимают видное место среди других неорганич. продуктов. С. к. широко применяется для получепня хлоридов цинка, марганца, железа и др. металлов, а также хлористого аммония. С. к. применяют для очистки поверхностей металлов, сосудов, скважин от карбонатов, окислов и др. осадков и за-грязнепин. При этом используют специальные добавки — ингибиторы, к-рые защищают металл от растворения и коррозии, но пе задерживают растворения окислов, карбонатов и других подобных соединений. Хлористый водород нашел широкое применение в крупном промышленном производстве синтетич. смол, каучуков и др. продуктов, он используется как сырье в производстве хлорвинила из ацетилена, синтетич. каучука — найрита, хлористого этила из этилена, хлористого метила пз метилового спирта и ряда других продуктов гндрохлорирования органич. соедпнений. [c.484]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Важным фактором является также диспропорция между масштабами потребления бензина и других легких дистиллятов и содержанием их в нефтях прямая перегонка нефти дает их слишком мало, нужна деструкция тяжелых углеводородов до более легких. В прошлом эта причина вызвала к жизни сначала термический, а затем каталитический крекинг. Эти процессы и сейчас играют важную роль в переработке нефти, но их возможности ограничены из-за низкого содержания водорода. Хиндс подсчитал потенциальный выход бензина как функцию содержания водорода в сырье в случае так называемого идеального катализа, когда водород совсем не участвует в образовании нежелательных продуктов (рис. 1). Если учесть, что содержание водорода в тяжелом сырье обычно равно 12%, теоретический выход бензина составит не более 75—80%. Фактические выходы из-за газообразования существенно ниже. Следовательно, для повышения выходов ценных дистиллятных продуктов в переработке нефти неизбежно применение гидрогенизационных процессов. [c.10]

    Как основное достоинство выше рассмотренных термических процессов переработки ТНО следует отметить меньшие по сравнению с каталитическими процессами капитальные вложения и эксплу атационные затраты. Главный недостаток, сушественно ограничивающий масштабы их использования в нефтепереработке,-ограниченная глубина превращения ТНО и низкие качества дистиллятных продуктов. Значительно более высокие выходы и качество дистиллятных продуктов и газов характерны для процессов каталитического крекинга. Однако для них присущи значительные как капитальные, так и эксплуатационные затраты, связанные с больыгим расходом катализатора. Кроме того, процессы каталитического крекинга приспособлены к переработке лишь сравнительно благоприятного сырья-газойлей и остатков с содержанием тяжелых металлов до 30 мг/кг и коксуемостью ниже 10% (мае.). В отношении глубины переработки ТНО и качества получающихся продуктов более универсальны гидрогениаа-ционные процессы, особенно гидрокрекинг. Но гидрокрекинг требует проведения процесса при чрезмерно высоких давлениях и повышенных температурах и, следовательно, наибольших капитальных и эксплуатационных затратах. Поэтому в последние годы наблюдается тенденция к разработке процессов промежуточного типа между термич с-ким крекингом и каталитическим гидрокрекингом, так называемых гидротермических процессов. Они проводятся в среде водорода, но без применения катализаторов гидрокрекинга. Очевидно, что гидротермические процессы будут несколько ограничены глубиной гидропереработки, но лишены ограничений в отношении содержания металлов в ТНО. Для них характерны средние между термическим крекингом и гидрокрекингом показатели качества продуктов и капитальных и эксплуатационных затрат. Аналоги современных гидротермических процессов использовались еще перед второй мировой войной для ожижения углей, при этом содержащиеся в них металлы частично выполняли роль катализаторов гидрокрекинга. К гидротермическим процессам можно отнести гидровисбрекииг, гидропиролиз, дина-крекинг и донорно-сольвентный крекинг. [c.79]

    Синтез аммиака из азота и водорода под давлением является классическим в области прикладной химии. Процесс был осуществлен в 1910 г. фирмой БАСФ в Германии и был одним из первых промышленных применений катализа, последовавшим через несколько лет после создания процессов окисления ЗОа и окисления аммиака. Успешное освоение процесса в заводском масштабе впервые продемонстрировало значение применения термодинамических и кинетических принципов к химическим реакциям. [c.153]

    Осуществлен в крупнозаводском масштабе процесс каталитического гидрокрекинга тяжелых нефтяных остатков в кипящем слое с целью значительного увеличения выходов топливных нефтепродуктов [9]. Тяжелые остатки и водород подогреваются раздельно. Свежее сырье смешивается с газойлем и подается в низ реактора в кипящий слой. В качестве сырья применяется смесь вакуумных гудронов, асфальтенов и экстрактов масляного производства со следующими свойствами удельный вес 1,0336 до 565° С выкипает 31 объемн. % коксуемость 24,3% содержание серы около 4 /о содержание металлов мг/кг) V — 206 № — 46. Расход водорода 416 м /т сырья. Были получены следующие выходы продуктов бензин С (204° С) — 15% (серы 0,1%), керосин (204—260° С) — 12,3% (серы 0,3%), дизельное топливо (260—343° С) — 21,1% (серы 0,7), вакуумный газойль (343—565° С) — 8,6 /о (серы 1,0%), пек — 34,8%) (серы 4,3%). На этой установке перерабатывалось самое разнообразное нефтяное сырье, в том числе смесь газойля с вакуумным гудроном (в самых различных соотношениях ком- понентов). Процесс этот сложный и дорогой, так как требует и большого расхода водорода, и применения аппаратуры высокого давления. Он позволяет получать из тяжелых нефтяных остатков до 50% дистиллятных продуктов, из которых легко получить широкий ассортимент моторных топлив — от автомобильного бензина до дизельного топлива. Вариант этот хорошо вписывается в нефтеперерабатывающий завод топливного направления. Получаемый же нефтяной пек (35 7о) может найти широкое применение при производстве металлургического кокса, вяжущих материалов, адсорбентов, различных тпнов графитизированных материалов и технических разновидностей углерода. [c.249]

    Мезитилен занимает второе место из триметилбензолов по значению и масштабам промышленного производства. В небольших количествах он уже давно производится из коксохимического ырья в СССР и ФРГ. В США. по крайней мере, две фирмы производят мезитилен из нефтяного сырья [84]. В Японии мезитилен также выпускается двумя фирмами [51. 64, 84]. Известно -Н1а в одном случае производство организовано на установке по изомеризации ксилолов, работающей по способу фирмы Mitsubishi Gas hemi al [64]. Не исключено, что мезитилен в этом случае так же, как и л-ксилол, выделяется с применением экстракции смесью фтористого водорода и трехфтористого бора [в8]. [c.269]

    В промышленных масштабах используется только метод восстановления отходящих газов производства азотной кислоты с применением платинового или палладиевого катализатора вместе с топливным мазутом эффективность метода превышает 907о. В ряде случаев считается достаточным восстановление до оксида азота (II), когда выхлопные газы становятся бесцветными. На это расходуется стехиометрическое количество горючего газа, например природный или доменный газ, СО, Hs и пары керосина. Для полного восстановления необходимо дополнительное количество горючего газа, который должен реагировать как с кислородом, так и с диоксидом азота. Температура процесса должна быть ниже 850 °С, и в случае присутствия больших количеств кислорода следует использовать двухстадийный процесс для того, чтобы температура во время реакции не превысила 850°С. Температура зажигания изменяется от 150 (если в качестве топлива используют водород или оксид углерода) до 400°С (если используют метан). [c.196]

    В исследованиях применялись реакторы с внутренним диаметром 2,5 см, В которых помещалось 50 см гранулированного катализатора. При температуре 450° С объемная скорость подачи смолы [4] составляла 0,2 час , причем парциальное давление сырья при оби ем давлении водсфода равном 200 атм было меньше 1 атм таким образом применялся очень большой избыток водорода. Для промышленного применения этого процесса необходимо было увеличить объемную скорость и парциальное давление сырья (т. е. уменьшить избыток водорода). В опытах, проведенных в большем масштабе, было найдено, что активность катализатора быстро уменьшается. Катализатор покрывался слоем высококипящих асфальтеновых углеводородов с малым содержанием водорода. Дальнейшие исследования показали, что при 450° С и 200 атм давления водорода ароматические соединения с четырьмя или более конденсированными кольцами гидрируются очень медленно и, кроме того, они дополнительно поли- [c.256]

    Но производство моторных топлив строится ныне помимо нефти на базе окиси углерода и водорода, получаемых из бурых углей. Синтез основан на гидрировании окиси углерода водородом в присутствии катализатора. Эта реакция открыта впервые Е. И. Орловым в 1908 г. и спустя 18 лет была осуществлена в Германии Фишером и Тропшем в промышленном масштабе. Б настоящее время производство искусственного жидкого топлива нашло промышленное применение во многих странах. [c.18]

    Многие свойства воды, такие, как значите, ьнын ди-польный момент, амфотерный характер, большая диэлектрическая проницаемость и, наконец, ее доступность. и легкость очистки ставят ее в особое положение как растворитель. Однако в некоторых случаях неводные среды могут быть применены с большим успехом. Началом исследований в этой области является применение теории Дебая — Хюккеля к неводным растворителям, используемым в качестве среды в органических реакциях. В настоящее время некоторые неводные растворители, например безводный фтористый водород, применяются в промышленном масштабе. Поэтому удивительно, что так мало известно о многих возможных иевод-ных. растворителях. [c.348]

    Процесс катформинга. Процесс катформинга был разработан и реализован в промышленном масштабе фирмой "The Atlanti Refining Со (США) в августе 1952 г. [125]. Отличительными особенностями этого процесса являются использование в качестве носителя в катализаторе алюмосиликата, содержащего от 5 до 80% окиси алюминия, а также применение высоких объемных скоростей. Газ, образующийся в процессе, содержит 90-95% (об.) водорода. [c.61]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    Таллиевую губку промывают и прессуют в брикеты. Во избежание окисления губку и брикеты рекомендуется хранить под водой. Переплавляют брикеты под слоем щелочи, канифоли или масла. Переплавка под щелочью позволяет получать более чистый металл, так как ряд примесей — цинк, свинец, хром и др.— в основном переходят в щелочной шлак. На некоторых заводах спрессованную таллиевую губку переплавляют под слоем угля до 10—12% Т1 переходит в окислы, направляемые в оборот. В некоторых случаях рекомендуется переплавлять под слоем Н.2С2О4, Na N и т. п., а также в атмосфере водорода [126]. Эти методы, по-видимому, находят применение только в лабораторных масштабах или для получения таллия высокой чистоты (см. далее). [c.356]

    Разделяют РЗЭ главным образом на катионитах. Наиболее широко применяют за границей дауэкс-50, амберлит Щ-120, в СССР КУ-2, СДВ и др. Они содержат активную группировку ЗОдН, в которой водород способен к обмену на любой катион. В качестве комплексообразователей (элюантов) испытывалось большое число органических производных, относящихся к различным классам соединений карбоновые оксикислоты (лимонная, молочная, а-оксимасляная), аминокислоты (аминоуксусная), аминополикислоты (этилендиаминтетрауксусная, нитрилтриуксусная), сложные кетоны (теноилфторацетон) и др. Один из первых комплексообразователей, примененных в полупромышленном масштабе в качестве элюанта, была лимонная кислота. [c.119]

    В промышленности амины лолучают восстановлением нитросоединений железом в. присутствии соляной или уксусной кислоты. По классическому методу Вешана и Бринмейера восстановление ведут в металлических сосудах в присутствии измельченных и обезжиренных опилок литого железа. Перед восстановлением железо подвергают травлению разбавленными кислотами, благодаря чему повышается его активность. Очень хорошие результаты получают при работе с железом, восстановленным водородом. Характерной чертой метода является применение значительно меньшего количества кислоты, чем это необходимо по стехиометрическому расчету, так как в присутствии РеС12 реакция идет за счет водорода воды. В последней стадии реакции образуется смесь окислов железа, в которой преобладает Ре Оз . В промышленности количество кислоты можно ограничить /40 частью от теоретически необходимого. При работе в малых масштабах применяют несколько большее количество кислоты, однако не превышающее 0,5 грамм-эквивалента на моль нитросоединения, так как в противном случае в раствор переходит слишком много железа и при выдапении образуется плохо фильтрующаяся гидроокись железа. [c.496]

    Метод электрохимического фторирования быстро нашел практическое применение для лолучения различных перфторированных соединений в небольших масштабах. Наиболее удобно использовать его для получения перфторкарбоновых кислот. Для этой цели во ф тористом водороде растворяют хлорангид-рид кислоты. При этом хлорангидрид переходит во фторан-гидрид  [c.226]

    Требования к чистоте водорода. В промышленном масштабе конверсией углеводородного сырья получают водород чистотой более 99,9% [3]. Это требует применения высоких температур, низкого давления, большого избытка водяного пара, отсутствия инертных газов в сырьевом углеводороде и водяном паре и последующей очистки водорода для почти полного удаления примесей. Однако для многих областей применения такая высокая чистота водорода не требуется. Для большинства процессов нефтепереработки чистота водорода может быть 95% и ниже при условии, что в качестве примесей содержатся метан и азот. В таких случаях наиболее экономи- чные условия процесса достигаются соответствующим изменением температуры и давления и рациональным выбором схемы очистки. [c.172]

    В настоящее время анодная защита сформировалась как самостоятельное направление электрохимической защиты. С ее появлением значительно возрос интерес к электрохимической защите в химической промышленности. Катодная защита, широко распространена для подземных и гидротехнических сооружений и для реакторов в химической промышленности она используется в очень ограниченных масштабах, в основном для защиты конструкций в технической воде, сточных водах предприятий и в ряде сред, содержащих ионы хлора. Однако в агрессивных средах ее применение затруднено, так как для достижения защитного катодного потенциала необходимо прилагать высокую плотность тока, при которбй на защищаемой поверхности происходит интенсивное выделение водорода. Так, в 0,65 н. серной кислоте защитная плотность тока для углеродистой стали при катодной защите равна примерно [c.69]

    В качестве акцептора водорода могут применяться также и кегоны, например бепзофетгон это видоизменение метода сжа-жеггся, вероятно, достаточно общим и найдет применение для окисления низкомолекулярных вторичных спиртов (таких, как ацеталь VIII, получаемый из альдоля [29]) даже в крупных масштабах. [c.249]

    Получение и применение. М. получают кислотным гидролизом полисахарвдов (напр., D-глюкозу-из крахмала, D-ксилозу-из богатых ксиланами отходов переработки с.-х. растений и древесины). Смесь глюкозы с фруктозой получают гидролизом сахарозы и используют в пшц. пром-сти. D-Глюкоза находит применение в медицине. Восстановление D-глюкозы в D-сорбит и D-ксилозы в ксилит осуществляют в пром. масштабах водородом над никелевым катализатором. Е>-Сорбит служит исходным соед. в синтезе аскорбиновой к-ты (см. Витамин С) и наряду с ксилитом используется как обладающий сладким вкусом заменитель сахарозы при заболевании диабетом. Разнообразные М. часто служат удобными хиральными исходными в-вами в синтезе сложных прир. соед. неуглеводной природы. [c.140]


Смотреть страницы где упоминается термин Применение водорода масштабы: [c.52]    [c.189]    [c.285]    [c.9]    [c.60]    [c.327]    [c.638]    [c.220]    [c.132]    [c.410]    [c.376]    [c.34]    [c.242]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Водород применение



© 2025 chem21.info Реклама на сайте