Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метионин См молоке

    Для птиц незаменимой аминокислотой является глицин. У жвачных животных биосинтез всех НАК производится микроорганизмами кишечного тракта, при зтом необходимы в достаточном количестве соединения азота (аммонийные соли, мочевина). Для человека обеспечение организма НАК — важнейшая задача питания. Высокую биологическую ценность имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат НАК не только в достаточном количестве, но и в необходимом для человека соотношении. Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). Важными компонентами смешанного корма являются рыбная и соевая мука. В белке соевой муки и в белке кормовых дрожжей мало метионина, в кукурузе — лизина и триптофана. Дефицит может компенсироваться добавлением недостающей аминокислоты илн подходящей комбинацией других белков. [c.19]


    Белки довольно резко различаются по аминокислотному составу, в том числе и по содержанию незаменимых аминокислот. Некоторые белки содержат все незаменимые аминокислоты в количестве, достаточном для организма человека и животных. Такие белки называются биологически полноценными. К ним относятся белки куриного яйца, молока, ряда органов животных. Однако многие белки, чаще всего растительного происхождения, не содержат или содержат в недостаточном количестве одну или несколько незаменимых аминокислот. Например, в белках зерновых злаков содержится недостаточное количество лизина и триптофана, в белках семян бобовых культур недостаточно метионина, в белках клубней картофеля мало валина и т. д. Эти белки называют неполноценными. Нетрудно рассчитать, что если в каком-либо белке одна из незаменимых аминокислот содержится в количестве в 2 раза меньшем, чем необходимо для удовлетворения потребностей [c.392]

    Альфа-химотрипсин является белком с молекулярным весом 21 600— 27 ООО. Он относится к группе протеолитических ферментов. Подобно трипсину, он гидролизует белки и пептоны с образованием относительно низкомолекулярных пептидов. От трипсина он отличается По действию тем, что расщепляет преимущественно связи, образованные остатками ароматических аминокислот (тирозин, триптофан, фенилаланин, метионин). В некоторых случаях химотрипсин производит более глубокий гидролиз белка, чем трипсин. Отличается также от трипсина тем, что вызывает свертывание молока, в то время как трипсин свертывания молока не вызывает. Химотрипсин более стоек, чем трипсин, и медленнее инактивируется. [c.134]

    В табл. 3 приведен аминокислотный состав белка женского молока и других белков. Коровье молоко по составу хотя и близко к этому эталону, но все же отличается от него. Животные белки (яйца, мясо) довольно удовлетворительны, растительные же белки содержат меньше незаменимых аминокислот, а в некоторых случаях наблюдается острый дефицит одной или нескольких из них. Например, пшеничная мука содержит всего треть оптимального количества лизина, в дрожжах мало метионина и лейцина, в горохе мало триптофана и метионина, а в сое — лейцина. [c.496]

    Углеводы в семенах сои, представленные в основном сахарозой, почти полностью растворяются в воде. Она содержит большое количество витаминов А, О, Е, С, а витамина В1 в ней в 3 раза больше, чем в сухом коровьем молоке, Вг — в 6 раз больше, чем в зерне пшеницы. Много в семенах сои неорганических веществ (калия, кальция, фосфора), а также фитина. В 1 кг семян сои содержится 320—450 г протеина, 21,9 г лизина, 4,6 г метионина, 5,3 г цистина, 4,3 г триптофана, 25,6 г аргинина, 7,6 г гистидина, 26,2 г лейцина, 17,6 г изолейцина, 17 г фенилаланина, 12,7 г треонина и 18 г валина. [c.97]


    Всем известно, что наиболее ценны молочные и яичные белки, несколько менее — белки мяса и еще меньше — растительный белок. В последнем меньше незаменимых аминокислот. Сравнивая, например, белки говядины, муки и картофеля с белком молока, следует отметить, что в муке мало лизина, в картофеле — лейцина. Как правило, суммарный белок растений не сбалансирован по ряду незаменимых аминокислот. Так, белки злаков дефицитны почти по всем незаменимым аминокислотам, лимитирующая аминокислота — лизин. Белки бобовых дефицитны по лейцину, метионину, валину, триптофану и другим, лимитирующая аминокислота — лейцин или метионин. [c.79]

    ТЫ — аминокислоты, которые не синтезируются в организме. Содержание их в пищевых продуктах необходимо для роста, развития и поддержания нормального физиологического состояния человека, животных и некоторых микроорганизмов. Аминокислоты, которые могут синтезироваться в организме, называются заменимыми аминокислотами. Основным источником аминокислот являются белки, которые расщепляются в н елу-дочно-кишечном тракте до аминокислот. Белки, в состав которых входят все Н. а., называются полноценными белки, которые не содержат хотя бы одну из незаменимых аминокислот, являются неполноценными. Н. а. богаты животные белки — молоко, мясо. Н. а. для человека и всех животных являются восемь аминокислот лизин, треонин, триптофан, метионин, фенилаланин, лейцин, валии, изолейцин. Для роста молодых крыс, кроме того, необходим еще аргинин для роста цыплят необходимо до 15 аминокислот. Г1ри отсутствии в организме (пище) отдельных Н. а. могут развиваться некоторые заболевания, например, при отсутствии триптофана развивается катаракта. [c.171]

    Белки важнейшая составная часть пищи человека и корма животных. Человеку необходимо и день в среднем 70 г белка. Главным источником пищевого белка являются сельскохозяйственные продукты — мясо, молоко, пшеница, рожь, кукуруза, рис, соя, горох, фасоль, различные овощи и фрукты значительные количества белка содержат рыба и продукты моря. Основными характеристиками пищевого или кормового белка принято считать его переваривае-мость и сбалансированность по аминокислотному составу это устанавливается путем сравнения данного белка со стандартным препв-ратом, например казеином или лактальбумином, в наилучшей степени отвечающим физиологическим потребностям человека и животных. В то же время известно, что многие белки содержат недостаточное количество некоторых незаменимых аминокислот — лизина, триптофана, метионина, вследствие чего их питательная ценность резко снижается примером может служить белок кукурузы, обнаруживающий дефицит по лизину. В этом случае целесообразно для компенсации добавлять к рациону рассчитанные количества недостающего компонента — в виде свободной аминокислоты либо в виде другого белка, специфически богатого данным компонентом. Таким путем, в частности, готовят искусственные питательные смеси, применяемые для лечебного питания во многих странах. [c.23]

    Производное птеридина — фолиевая кислота (51), природный фактор роста, который необходим для жизнедеятельности всех высших животных. Фолиевая кислота принимает участие в биологических превращениях серина в глицин и гомоцистеина в метионин. Синтетическая фолиевая кислота, отличающаяся от природной отсутствием двух атомов азота, применяется в качестве сильн шего противоопухолевого средства [73]. Рибофлавин (витамин Вг) (52), производное бензо[ ]птеридина, встречается в фосфорилированной форме в проросшем зерне, молоке и яйцах. Феназиновая циклическая система входит в состав некоторых синтетических красителей и природных пигментов [например, голубой бактериальный пигмент пиоциании (53)]. Среди производных хиназолина встречаются соединения, примшяемые в качестве лекарственных препаратов иапример, седативное средство метакуалон (54) и празозии (55), применяемый для лечения гипертонической болезни. [c.327]

    При выдерживании на солнечном свету у молока иногда появляется нежелательный привкус. Этот так называемый привкус от солнечной активации , связанный с белковой частью молока, вызывается [269] фотолизом метионина и катализируется рибофлавинод . Добавка перекиси водорода к молоку предотвращает развитие этого вкуса [270]. [c.521]

    Особый интерес представляет различие в содержании цистина и метионина в женском и коровьем молоке. Лактальбумин коровьего молока содержит несколько больше метионина, чем лактальбумин женского молока. Однако явно выраженный недостаток цистина в казеине коровьего молока делает белки коровьего молока менее полноценными в отношении серусодержащих аминокислот, чем белки женского молока. Эти аналитические наблюдения были подтверждены опытами на белых крысах. Если к коровьему молоку добавить цистин или метионин в таком соотношении, чтобы количество серусодержащих аминокислот было эквивалентно их содержанию в белках женского молока, то питательная ценность белков коровьего. молока за.метно повышается. Это вытекает из определений баланса азота, из опытов по росту и по питанию (см. таблицу Кератины. Серусодержащие аминокислоты в белках шерсти животных , стр. 236). [c.244]


    Метионин входит в состав большинства растительных и животных белков. Особенно велика потребность в нем птиц. Поэтому в птицеводстве используют 90% общего выпуска метионина. В корма для молочного и мясного крупного рогатого скота добавляют не метионин, а его оксианалог. В результате его применения надои молока у коров возрастают на 12—18%, привесы молодняка крупного рогатого скота — на 11%, настриг шерсти овец — на 36—37%. На основании потребности живот- ных в метионине рекомендуется следующее его содержание в комбикормах для птицы — 0,5—2,5 кг/т, для свиней — 0,5— 1,0 кг/т. В ФРГ в рационы кур метионин добавляют в количестве 0,075—0,25%, что способствует увеличению массы мяса на 12—16%. [c.288]

    Различие между химотрипсином и трипсином состоит также в том, что химотрипсии свертывает молоко, но не свертывает кровь, в то время как трипсин свертывает кровь и не свертывает молоко (в обычных условиях). Так как поджелудочный сок (после активирования его в кишечнике) содержит трипсин и химотрипсин, то в результате их совместного действия белки и пептоны гидролизуются в кишечнике до низкомолекулярных пептидов. Химотрипсин расщепляет с наибольшей скоростью пептидные связи, в образовании которых участвуют карбоксильные группы тирозина, фенилаланина, триптофана или метионина. [c.334]

    Влияние НДГК на поглощение кислорода фосфолипидной фракцией молока в присутствии синергистов — лимонной, аскорбиновой кислот и метионина — можно видеть на рис. 59. [320]. [c.275]

    Устойчивый к высоким температурам метионин при окислении легко превращается в метионинсульфоксид и далее в метионинсульфон. Обработка перекисью водорода при отбеливании пищевых продуктов и стерилизации молока или сыворотки также приводит к увеличению содержания метионинсульфоксида. Белковосвязанный метионин, окисленный до сульфоксида, переваривается очень плохо. Опыты на крысах показали, что в воротную вену он поступает в относительно высокой концентрации и переваривается, следовательно, в кишечнике под действием ферментов. [c.8]

    Химотрипсин представляет собой второй протеолитический фермент поджелудочной железы. Он обладает также и способностью створаживать молоко. Свежая поджелудочная железа содержит химотрипсиноген, который был выделен в кристаллическом виде [78]. Химотрипсиноген превращается в активный фермент — химотрипсин — под действием небольших количеств трипсина 1 мг трипсина способен активировать 3 г химотрипсиногена, причем активность последнего возрастает при этом примерно в 1 ООО раз. Превращение химотрипсиногена в химотрипсин является, повидимому, очень сложным процессом, при котором образуются несколько промежуточных продуктов. Так, например, установлено, что химотрипсиноген переходит сначала в Tt-химотрипсин, затем в 8-химотрипсин. В конечном итоге из химотрипсиногена получается смесь химотрипсинов, обозначаемых буквами а, р и Y [79, 80]. Сущность процесса активации заключается, повидимому, в освобождении 4— 6 аминогрупп в каждой молекуле химотрипсиногена [82]. В результате стояния водного раствора а-химотрипсина при pH 7,6 происходит необратимое превращение его в и у-химотрипсины, которые отличаются от а-химотрипсина по форме кристаллов и по растворимости [80]. Y-Химотрипсин является димером а-химотрипсина [81]. Химотрипсин расщепляет пептидные связи, образованные карбоксильной группой тирозгша, фенилаланина, триптофана или метионина [20, 83], а также эфиры тирозина [84]. [c.293]

    Кобальт входит в витамин необходимый для питания животных. Молекулярная структура этого витамина полностью установлена. Как упоминалось ранее, высшие растения получают кобальт из почвы, по пе образуют витамина Bi2, по крайней мере в тех количествах, которые требуются н<ивот-ным, питающимся этими растениями. Образование витамина Bjg из неорганических соединений кобальта происходит путем синтеза, выполняемого бактериями, причем желудочные бактерии жвачных животных особенно важны в этом отношении. Перенос витамина В12 к другим л ивотным и человеку через молоко и мясо является важнейшей составляющей пищевого цикла. Животные, страдающие от недостатка витамина Bj2, обычно слабы, непродуктивны и медленно растут. Биохимический механизм функций витамина В12 полностью не установлен, но известно, что этот витамин является существенным при синтезе лабильных метильных групп метионина. В организме человека витамин В12 является фактором, предупреждающим злокачественную анемию. Обзоры роли кобальта в питании животных даны в работах Андервуда [2] и Смита [52]. [c.72]

    В образовании метионина и цистина могут также принимать участие неорганические сульфаты. При добавлении Ыа25 04 в пищу коровы через два дня метрюнин и цистин из молока содержали радиоактивную серу [1417]. [c.494]

    Характерной особенностью протаминов является и то, что они имеют незначительный колекулярный вес, не превышающий 10 ООО, благодаря чему их даже не считают истинными белками. Типичным представителем протаминов является клупеин, содержащийся в сперме сельди, и сальмин — в молоках семги и других рыб. Молекулярный вес клупеина и сальмина около 6000. В про-таминах отсутствуют тирозин и триптофан, а также цистеин и метионин. [c.54]

    Белок сыворотки молока — казеин (творог) содержит в своем составе довольно много метионина, поэтому он также обладает лнпотропным действием, т. е. способствует удалению из печени избытка жира. [c.414]

    Не все аминокислоты белков одинаково реакционноспособны при тепловой обработке. Наиболее легко вступает в реакцию меланоидинообразования лизин — важная незаменимая аминокислота, которая в результате тепловой обработки не усваивается организмом. Относительно неустойчивы к тепловым воздействиям метионин и цистин. Эти аминокислоты весьма чувствительны ко многим видам технологической обработки. Так, если белок натурального молока практически содержит все незаменимые аминокислоты, то в белке сухого молока содержание метионина и цистина составляет 93% оптимального содержания, а доступного лизина на 25% меньше [21]. Кроме того, следует учесть, что в результате некоторых видов тепловой обработки не только лизин, но и серусодер-жащие аминокислоты становятся частично недоступными для переваривания пищеварительными ферментами [8, 23]. [c.11]


Смотреть страницы где упоминается термин Метионин См молоке: [c.351]    [c.423]    [c.173]    [c.363]    [c.326]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Метионин

Молоко



© 2025 chem21.info Реклама на сайте