Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение никеля меди и сплавах на основе меди

    РАБОТА 1. АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ ЖЕЛЕЗА, МАРГАНЦА, НИКЕЛЯ И СВИНЦА В СПЛАВАХ НА ОСНОВЕ МЕДИ (ЛАТУНЬ. БРОНЗА) [c.104]

    Определение меди в сплавах на основе железа и никеля [451, 452]. Метод применяют для определения 0,1—0,2% меди. [c.108]

    Из большого числа аномальных явлений едва ли не первое место занимает эффект независимости скорости растворения метала, находящегося в активной области, от потенциала Е. Это относится к растворению амальгам щелочных металлов, железа, никеля, хрома, цинка, алюминия и его сплавов, кобальта, марганца, титана, германия, меди, сплавов на основе железа. Для этих металлов было установлено, что выход по току реакций их растворения в определенных условиях превышает 100%. [c.111]


    Определение никеля в меди и сплавах на основе меди и алюминия [c.148]

    Подготовка атомно-абсорбционного прибора к работе. Работа 1. Атомно-абсорбционное определение железа, марган ца, никеля и свинца в сплавах на основе меди (латунь, бронза) методом интерполяции. . , . ........ [c.135]

    Скорость растворения сплавов зависит главным образом от их состава, электрохимической активности и электрохимических эквивалентов компонентов, составляющих сплав, а также от физико-химических параметров электролита. При увеличении содержания в сплаве хрома затрудняется нарущение его пассивного состояния при воздействии галоидных анионов [193]. Вследствие различия электрохимических эквивалентов компонентов сплава, их потенциалов растворения и способности к пассивированию во многих случаях при ЭХО происходит увеличение в поверхностном слое содержания более электроположительных составляющих (например, никеля, меди, молибдена). При этом в анодной поляризационной характеристике сплава может наблюдаться несколько участков, соответствующих пассивации его различных компонентов [178]. Это обусловливает необходимость обеспечения приблизительно одинаковой скорости растворения всех основных компонентов сплава при подборе электролита. Определенное влияние на процесс анодного растворения кроме химического состава сплава оказывает и его структура. Связь производительности электрохимической обработки сталей с их микроструктурой показана в работе [127]. При анодном растворении жаропрочных сплавов на никелевой основе отмечалось преимущественное растворение (растравливание) границ зерен вследствие их относительно более высокой активности. В зависимости от природы фаз, составляющих данный сплав, существенно различаются параметры возникающих на них пленок [117]. [c.34]

    Определение свинца, меди, висмута и кадмия в жаропрочных сплавах на основе никеля или железа [c.268]

    Определение малых количеств кобальта, железа, меди, цинка, свинца, висмута, олова в жаропрочных сплавах на никелевой основе представляет весьма трудную аналитическую задачу. Это связано с необходимостью их предварительного отделения от больщих количеств хрома, никеля, алюминия, молибдена, титана и других элементов. [c.342]

    Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов. [c.49]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Предназначен для анализа любых марок сталей, включая определение углерода, серы и фосфора, а также для анализа сплавов на основе алюминия, меди, никеля, хрома, цинка, титана и др. [c.389]

    Прецизионные сплавы изготовляют в основном на железной, никелевой и кобальтовой основах. Легирование железа, никеля и кобальта отдельно или небольшими добавками хрома, молибдена, вольфрама, ванадия, меди, алюминия и других металлов осуществляют для получения определенных физических и физико-механических свойств прецизионных сплавов. В то же время нельзя не отметить, что дополнительное легирование различно будет влиять на их коррозионную стойкость. [c.160]

    Р 51576-2000 Сплавы и порошки жаропрочные, коррозионно-стойкие, прецизионные на основе никеля. Методы определения меди [c.570]

    При pH 3,5—9,5 медь полностью экстрагируется 0,02 Л1 раствором реагента в амилацетате. Максимум поглощения экстракта при 344 ммк можно использовать для определения этого элемента в сплавах на основе алюминия и цинка. Никель и другие металлы, обычно присутствующие в этих сплавах, не мешают при pH < 5 [868]. [c.158]

    Вначале определяют основной элемент сплава — алюминий. Для этого берут два электрода из чистого алюминия (или один угольный, один из алюминия), включают ток и просматривают спектр на стилоскопе. Заметив интенсивные полосы спектра в области 5400—4400 А, ставят индикаторную стрелку прибора на самый интенсивный кант полосы 4842 А. Затем алюминиевые электроды заменяют на угольный электрод и испытуемый сплав. Если в спектре наблюдаются интенсивные полосы А10 (почти такой же интенсивности, как в чистом алюминии), то основа сплава — алюминий. После этого в спектре сплава определяют наличие меди по линиям 5782, 5292, 5218, 5153, 5105 А магния — по линиям 5183 5172, 5167 А марганца — по линиям 4823, 4768 А никеля — по линиям 5035, 5017, 4980, 4984 А кремния — по линии 3905 А. Определение кремния следует вести в искровом режиме. [c.172]

    Полярографические методы определения свинца (при его содержании от 0,0001%) с успехом применяют при анализе металлического хрома, молибдена, меди, железа, сплавов на основе никеля и хрома [142, 143], руд [144], цветных металлов [145, 146] и др. Полярографический метод определения свинца наряду с колориметрическим дитизоновым методом рекомендуется для контроля металла. [c.57]

    Элементы, образующие в слабокислой среде устойчивые 1 0милек-сонаты, не мешают определению (медь, никель, алюминий и др.). При определении бериллия в сплавах иа ниобиевой основе ниобий маскируют тартратом, а другие ионы — комплексоном III. В этих условиях окрашенное соединение с алюминоном дают только иоиы бериллия. [c.372]


    Расчеты в гравиметрии. 1. Искомое вещество определяют в той же форме, в которой оно находится в пробе. Например, при расчете содержания меди (х %) в медных концентратах на основании данных электрогравиметрического анализа применяют формулу х = = —в которой g — масса катода с выделившейся медью, г -1 — масса катода, г Ок — навеска концентрата, г. 2. Искомое вещество определяют не в той форме, в которой оно находится в пробе. Например, при определении содержания никеля в сплавах на медной основе диметилглиоксимом его содержание (х %) вычисляют ло формуле 0,2032-ЮО/Оо, в которой А — масса просушенного осадка диметилглиоксимата никеля, г 0,2032 —- коэффициент пересчета днметилглноксимата никеля на никель Со — навеска образца, г. [c.27]

    Для определения микроколичеств мышьяка в сплавах на основе меди, никеля и железа мышьяк выделяют из раствора, восстанавливая его гинофосфитом натрия в присутствии хлорида олова(П) до элементного мып[ьяка с использованием теллура в качестве носителя [556]. При использовании пробы массой 10 г метод позволяет определять. >-10 % Ая. При содержании мышьяка 1-10 % коэффициент вариации составляет 6%. [c.99]

    Биметаллические системы интересуют ученых, специализирующихся в области катализа (каталитиков), уже в течение длительного времени. Многие первоначальные работы в -этой об-ласти, касающиеся зависимости между каталитической активностью и электронной структурой металлов, базировались на ранних концепциях, предложенных Дауденом [14, 15] и Швабом [16]. Основой этих работ было учение о каталитической активности как функции состава сплава, поскольку последний определяет электронные свойства металла. В этом отношении сплавам металлов группы VIII и подгруппы 1Б (например, никель— медь) уделялось особое внимание, так как обычно предполагается, что ui-электроны играют важную роль в определении каталитической активности. Считается, что для этих сплавов металл подгруппы 1Б — донор s-электронов для d-оболочки металла группы VIII, а это делает возможным контролировать плотность d-электронов. [c.20]

    Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]

    Хорошим подтверждением электрохимической субмикронеоднородности поверхности сплавов может служить экспериментально наблюдаемое изменение соотношения концентраций компонентов в поверхностных слоях подобных сплавов в начальных стадиях коррозии, т. е. при протекании компонентно избирательной коррозии. Например, установлено, что в сплавах на основе титана или в нержавеющих сталях наблюдается обогащение поверхности введенными в сплав более термодинамически стабильными катодными добавками (Р(1, Р1) [20, 42, 43]. В. В. Скорчелет-ти и его сотрудниками в сплавах Си—Ni в активном состоянии было зарегистрировано обогащение поверхности медью [41, с. 165]. При коррозии нержавеющих сталей, в зависимости от условий, авторами совместно с Л. Н. Волковым, установлена возможность накопления не только палладия и платины, но и других, более электроположительных по сравнению с железом, компонентов, например никеля, меди и рения [41, с. 164], кремния и молибдена [20, с. 39], а в условиях возможной пассивации даже и менее электроположительных, но более пассивирующихся компонентов, например хрома. Это вытекает из исследований А. М. Сухотина [44], авторов [20, 43], И. К. Марша-кова с сотрудниками [45]. Особенно убедительно это было доказано прямыми определениями с использованием высокопрецизионного -спектрометрического изотопного метода в работах, проведенных в институте им. Л. Я. Карпова под руководством Я. М. Колотыркина [46]. [c.68]

    При определении никеля в бронзах и сплавах на основе меди олово отделяют в виде оловянной кислоты, медь и свинец — электролизом в кислой среде никель или осаждают электролизом [35, 691а, 1217], или определяют гравиметрически диметилдиоксимом [154, 216, 333, 802, 810, 814, 820,854] используются также титриметрические методы. По методу Мора никель предварительно выделяют диметилдиоксимом и в дальнейшем поступают, как сказано на стр. 90 [216], или титруют раствором комплексона III [129, 130] в присутствии мурексида медь связывают тиосульфатом. Довольно широко распространены фотометрические методы [861]. [c.148]

    Способность ДТКК в определенных условиях образовывать устойчивые окрашенные соединения постоянного состава с ионами меди, кобальта, никеля и другими металлами позволяет использовать их для прямых фотометрических определений этих элементов, например, при спектрофотометрическом определении кобальта в сталях [10, 28], золота в индиевых сплавах [31], меди в сплавах на алюминиевой основе и в баббитах, а также в других промышленных объектах [9, И, 17, 18, 22, 23]. [c.204]

    Для определения влияния состава и структуры сплава в условиях сухого трения были испытаны следующие группы материалов 1) чистые металлы медь, хром, никель, железо, титан, кобальт 2) двойные однофазные сплавы твердый раствор меди с 5% олова и твердый раствор меди с 5% алюминия 3) двойные двухфазные сплавы с включениями второй фазы в виде твердых кристаллов химических соединений (медь с 10% олова и медь с 18% олова) 4) двойные двухфазные сплавы сплав меди с 10% алюминия, в структуре этого сплава в преобладающей фазе твердого раствора присутствуют участки твердого раствора Р более богатого алюминием и более твердого, оловянистоникелевая бронза БрОНЦС-4-8-8-17, содержащая 17% свинца и имеющая прочную и твердую основу сплава в виде кристаллов твердого раствора олова, никеля и цинка в меди (в структуре этого сплава вторая фаза представляет собой мягкие включения свинца, не взаимодействующего с основой сплава) 5) медные сплавы более сложного состава 6) анти- [c.289]

    Методы отделения кобальта от мешающих элементов (или наоборот) перед заключительным определением здесь менее многочисленны, чем при анализе руд и сплавов кобальта на железной основе. Обычно кобальту сопутствует в значительных количествах только какой-либо один элемент, составляющий основу сплава содержание других элементов невелико. Так, при определении кобальта в никеле или в сплавах с высоким содержанием последнего применяют следующие методы предварительного отделения или маскирования посторонних элементов. Железо экстрагируют в виде хлорида изопропиловым эфиром [1188], осаждают окисью цинка [109] или маскируют цитратом аммония [1417]. Медь связывают тиомочевиной [1417]. Для отделения кобальта от большей части никеля пользуются экстракцией роданидных [775], антипирин-[1518] или дианти-пирилметанроданидных [88] комплексов кобальта, осаждением диэтилдитиокарбамината [1200] или 1-нитрозо-2-нафтолата кобальта, поглощением хлоридного комплекса кобальта анионитом [1082]. В одной из работ рекомендовано [1002] перед [c.198]

    Наибольший интерес для промышленности представляют магнитные и электромагнитные приборы. В течение длительного времени для измерения толщины покрытий успешно лспользовали магнитные приборы, применяемые в том случае, когда металл основы или покрытия обладает ферромагнитными свойствами, например, магнитные приборы могут быть предназначены для измерения толщины немагнитных покрытий (медь, цинк, кадмий, хром, серебро, свинец, различные сплавы) на стали или чугуне. Они пригодны также для определения толщины пластмассовых или лакокрасочных покрытий. Что касается, например, никелевых покрытий, то магнитные измерения их толщины затруднены вследствие того, что при градуировке магнитных приборов имеют место большие неточности, вследствие того что никель [c.207]

    Алюминий не сорбируется из 9 М соляной кислоты сильноосновными анионообменными смолами, такими, как дауэкс-1, в то время как Си, 2п, Сс1, Ре(Пи111), Со, Зп(И и IV), ЗЬ(1И и V), V(V), Mo(VI),, W(VI), Сг(У1), и(У1) и Мп(УП) этой смолой сорбируются Вместе с алюминием в водном растворе остаются Мп(П), N1, Mg, Ве, РЬ, Сг(1П), редкоземельные элементы У(1У), Т1(1И и IV) и ТЬ(1У). Большинство этих элементов мешает определению алюминия алюминоновым методом. Свинец может сорбироваться смолой т 2 М соляной кислоты. При определении алюминия алюминоновым методом присутствующий никель можно связать пиридином. Ионообменные методы пригодны при определении алюминия в меди, уране, сплаве олова со свинцом и сплавах на основе железа. Ниже кратко описано выделение алюминия в отсутствие свинца. Ионообменной колонкой служит часть пипетки, градуированной на 10 мл. Обычно достаточно 5 мл влажной смолы (дауэкс-1, 10%-ный ДВБ, насыщенные 9 М соляной кислотой) 1 г сухой смолы сорбирует около 0,75 мэкв меди. Раствор анализируемого образца, содержащий 5—50 у алюминия, [c.199]

    В. В. Степин, В. И. Поносов и Е. В. Оилае1ва применили метод Мура и Крауса для отделения железа от меди, никеля, хрома и других элементов. Пр инцип метода состоит в том, что железо вместе с медью сорбируют из 8-н. раствора соляной кислоты на слабооснавном анионите АН-2Ф, отделяя их от перечисленных выше элементов. 3 атем железо и медь вымывают вз колонки 0,5-н. раствором той же кислоты, переводят в пярофосфатные комплексы, раствор подщелачивают до pH = 10-4-11, как это было показано при определении меди, и пропускают через колонку с вофатитом Р. При этом железо переходит в фильтрат и определяется фотоколориметрическим методом. Разработанный метод успешно применен при Определении малых количеств железа В чистых металлах и жаропрочных сплавах на никелевой основе. [c.182]

    Определени-е малых количеств кобальта, железа, меди, цинка, свинца, олова и висмута -в жаропрочных сплавах на никелевой основе представляет собой весьма трудную аналитическую задачу, так как связано с предварительным отделением их от больших содержаний хрома, никеля, молибдена, алюминия и некоторых других компонентов. Например, медь, цинк, свинец, висмут и другие элементы осаждают в виде сульфидо1В, применяя главным образом сероводород, а затем обрабатывают их кислотами и далее в зависимости от определяемого элемента применяют осадители — аммиак, метиловый фиолетовый, тиосульфат натрия и др. [c.275]


Смотреть страницы где упоминается термин Определение никеля меди и сплавах на основе меди: [c.137]    [c.677]    [c.180]    [c.488]    [c.441]    [c.140]    [c.445]    [c.723]    [c.58]    [c.47]    [c.315]   
Аналитическая химия никеля (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Медь и сплавы никель и сплавы

Медь сплавы

Медь, определение

Никель определение

Определение основы

Сплавы никеля

Сплавы никеля Jt И h I Сплав

никель сплавы меди сплавы никеля



© 2025 chem21.info Реклама на сайте