Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ранние концепции химической связи

    Ранние концепции химической связи 13 [c.13]

    Среди основных составных частей современной органической химии синтез, пожалуй, является одной из тех, которые обладают долгой историей. Идеи функциональности и стереохимии, например, возникли во второй половине XIX в., а концепции химической связи и механизмов реакций в таком виде, как они известны сегодня, появились несомненно лишь в нашем веке. Синтез же был важной составной частью органической химии с самого начала ее возникновения поэтому история его развития насчитывает многие столетня. Тем не менее следует отметить, что большинство ранних синтетических работ были отрывочным и сводились в основном к выделению веществ (причем сомнительной чистоты) из природного сырья. Действительно, систематическое развитие органического синтеза относится к XIX в., хотя его начало было положено значительно раньше. [c.11]


    Именно в этот период были разработаны многие концепции для объяснения химической связи и структуры молекул. В противоположность этому в течение последних 15 лет, когда основное внимание в теоретической химии было сосредоточено на получении при помощи ЭВМ все более точных решений квантовомеханических уравнений, было создано мало новых теорий. Некоторые более ранние идеи не выдержали испытания при сопоставлении с расчетами последнего времени, однако удивительно большое число концепций осталось полезным для химии. Примером глубоко укоренившейся и ранее широко применявшейся концепции, которая, однако, почти не играет роли при [c.8]

    Исследование природы химической связи является центральной проблемой всей теоретической химии Изучение строения и реакционной способности вещества дает богатую информацию о характере взаимодействия между атомами в молекуле, способствуя все более углубленному моделированию химических процессов Обобщение экспериментальных данных приводит на определенных этапах развития химии к теоретическим концепциям, которые наряду с чисто познавательным аспектом имеют и громадное практическое значение, так как позволяют вести исследование более целенаправленно Однако только с созданием аппарата квантовой механики — науки о движении микрочастиц (атомов, ядер, электронов и т д ) — ранее существовавшие теории химической связи получили естественное объяснение Современная квантовая химия является частью квантовой механики, в основе которой лежит представление о корпускулярно-волновом дуализме микрочастиц Если раньше электрон рассматривался как точечная частица, положение и скорость которой в принципе можно точно установить, то в дальнейшем было установлено, что электрон может обладать также и волновыми свойствами (например, мы можем при определенных условиях наблюдать дифракцию электронов) [c.56]

    Идея промежуточного (мезомерного) состояния, к которой умозрительно прищли химики английской школы, явилась первоначальным выражением концепции резонанса, развитой в математической форме Полингом, применившим принципы квантовой механики. Особое значение концепции резонанса состоит в объяснении удивительных эффектов стабилизации, связанных с резонирующими системами. Хлористый винил в терминах теории резонанса описывается как резонансный гибрид, по характеру сходный как с формой в, так и с формой д, он не является смесью этих форм, а представляет собой самостоятельную химическую индивидуальность, сочетающую в себе свойства обеих форм и обладающую резонансной стабилизацией, которая уменьшает реакционную способность системы. Свойства формы д, в которой хлор соединен двойной связью с углеродом, проявляются в гибриде в том, что длина связи С—С1 в хлористом виниле (1.69A) на 0,08A меньше, чем в хлористом этиле (1,77А). Из сравнения размеров обеих молекул следует, что эта укороченная связь примерно на 33% является двойной, и потому в данном случае атом хлора связан прочнее, чем с насыщенным атомом углерода. Хотя более ранняя концепция мезомерии не столь определенна, как концепция резонанса, структуры типа г, указывающие направление электронного сдвига, удобны для выражения идеи промежуточного состояния с помощью одной формулы. [c.75]


    Структурные модели учитывают специфику изменения физических свойств полимеризационной системы повышение ее вязкости при достижении критической концентрации перекрывания макро-молекулярных клубков полимера и нарастание скорости повышения вязкости в результате взаимного проникновения сжатых до -размера клубков полимера с их перепутыванием и образованием устойчивой сетки зацеплений. Полагают [91], что в ряде случаев причиной гель-эффекта является пространственная сетка макромолекул, образованная физическими или химическими связями, либо их совокупностью. Физические связи возникают в результате меж-молекулярного взаимодействия, образуя локальные зацепления макромолекул. По достижений некоторой длины цепи растущий радикал способен подвешиваться к уже сшитой структуре образовавшихся ранее макромолекул, что приводит к резкому падению ега подвижности. Согласно згой концепции полимеризацион-ную систему в вязких средах можно рассматривать как микро-гетерофазную. [c.67]

    Учение о природе химической связи является центральной проблемой всей теоретической химии. Изучение строения и реакционной способности вещества дает богатую информацию о характере взаимодействия между атомами в молекуле, способствуя все более углубленному моделированию химических процессов. Обобщение экспериментальных данных приводит на определенных этапах развития химии к теоретическим концепциям, которые наряду с чисто познавательным аспектом имеют и громадное практическое значение, так как позволяют вести исследования более целенаправленно. Однако только с созданием аппарата квантовой механики — науки о движении микрочастиц (атомов, ядер, электронов и т. д.) ранее существовавшие теории химической связи получили естественное объ- [c.43]

    Доминирующая концепция ранних теорий валентности, развитых Льюисом и другими, заключается в том, что при образовании химической связи атомы обмениваются электронами или перераспределяют их с образованием электронных конфигураций, обладающих наибольшей стабильностью или инертностью по отношению к дальнейшим химическим превращениям. Поскольку внешние оболочки атомов всех благородных газов содержат по восемь электронов, наиболее важным критерием стабильности стало правило октетов, предложенное независимо Косселем и Льюисом в 1916 г. Впоследствии Льюис ввел свою концепцию двухэлектронной связи и перенес акцент с правила октетов на правило двух электронов. [c.125]

    Многие черты современной теории, рассматриваемой в настоящей книг были намечены в работах Лангмюра и других авторов, опубликованных в течение десятилетия после 1916 г., и в книге Валентность и структура атомов и молекул , напечатанной Льюисом в 1923 г. Однако эти ранние исследования содержали наряду со многими предположениями, вошедшими в современную теорию, также и ряд других, теперь полностью отвергнутых. Превращение электронной теории валентности в ее современную форму почти полностью обязано развитию квантовой механики. Последняя дала метод расчета свойств простых молекул, привела к полному разъяснению явлений, связанных с образованием ковалентной связи между двумя атомами, приподняла завесу тайны, окутывавшую химическую связь в течение десятилетий со времени, когда впервые возникло предположение о ее существовании, и, кроме того, ввела в химическую теорию новую концепцию, а именно — концепцию резонанса. Эта идея, хотя и не была полностью непредвиденной в химии, но тем не менее она не была прежде в достаточной степени ясно сформулирована и объяснена. [c.14]

    На ранней стадии развития квантовой химии более популярным был метод ВС в основном из-за прямой взаимосвязи с классическим химическим представлением валентной связи. В практических приложениях верх одержал метод МО благодаря простоте его вычислительной схемы, однако полностью признанным в количественных исследованиях он стал только тогда, когда было показано, что в рамках этого метода возможен учет локализации МО [4]. Неудивительно, что наиболее многообещающая попытка Леннарда-Джонса с сотр. [4] примирить метод МО с концепцией валентного штриха была непосредственно связана с работой по улучшению метода МО путем учета электронной корреляции. Преобразование канонических орбиталей в эквивалентные не изменяет волновой функции ССП, однако предполагалось, что локализованное описание представляет лучшее исходное приближение для рассмотрения корреляции электронов. Кроме того, трансферабельность эквивалентных орбиталей предполагает возможность переносимости локализованных корреляционных вкладов. [c.166]

    На ранних этапах развития коллоидной химии набухание представлялось довольно странным явлением, присущим только некоторым особым материалам. Понимание его сути пришло более или менее одновременно с формированием концепции о высокополимерах. С термодинамической точки зрения оказалось, что процесс набухания полимеров и хорошо известный процесс растворения низкомолекулярных веществ весьма сходны между собой. Но даже несмотря на это, при изучении влаго-поглощающих полимеров, что имело место до исследований по набуханию каучуков, все время считали, что этот процесс специфичен и скорее связан с химическим взаимодействием и образованием каких-то новых связей, чем с общим механизмом диффузии и набухания. Только в результате развития статистической теории эластичности и применения этой теории Флори и Хаггинсом к явлениям набухания и растворения каучукоподобных полимеров возникла современная трактовка этого вопроса, связывающая явление набухания с молекулярной структурой полимера. [c.213]


    Из всех рассмотренных выше слоев в химическом отношении наиболее важны слои П1 и П. Именно из тех атомов, которые входят в них, образуется активная функциональная группа в переходном состоянии [39, стр. 464]. Рассмотрению механизма взаимодействия атомов слоев И и П1 посвящены все каталитические теории в их историческом развитии. В этом-то и проявляется конкретность приложения к этим теориям более общих кинетических концепций. Однако в связи с широким внедрением в химию электронных представлений в 1910 г., а также в связи с интенсивным развитием в это время экспериментальных методов исследования каталитических превращений, теории катализа, созданные в 20—30-х годах XX в., гораздо более детально рассматривают механизм взаимодействия в системе катализатор — реагент, чем изложенные нами ранее каталитические теории XIX — начала XX в. Ниже мы кратко рассмотрим основные теории катализа, созданные в 20—30-х годах XX в. [c.313]

    Концепция ионных пар нуждается в дальнейшем развитии. Применимость ее ограничена точно так же, как применимость концепции молекул. Молекулы существуют в температурном интервале, где энергия их связи больше кТ. При достаточно высокой температуре эта концепция лишена смысла, так как можно наблюдать лишь кратковременные столкновения между свободными атомами. Энергия электростатического взаимодействия между двумя ионами противоположного заряда определяется кулоновским членом г г е /аП, где г е я г е — заряды ионов, а — расстояние между ними и D — диэлектрическая проницаемость среды (реальные величины ) будут рассмотрены в дальнейшем). Следовательно, концепция пар применима, если г г е /аО больше кТ. Однако в растворителях с высокой диэлектрической проницаемостью и для достаточно больших ионов применимость этой концепции сомнительна. Действительно, в последних исследованиях Фуосса и Онзагера [14] релаксационных процессов установлено, что в уравнении электропроводности должен быть добавочный член, отсутствие которого в предложенных ранее уравнениях объясняется применением слишком грубого распределения Больцмана. Этот член пропорционален С/1 (/ — коэффициент активности ионов), что устраняет необходимость четкого постулирования равновесия между свободными ионами и их ассоциатами в виде пар при условии, что эта ассоциация обусловлена исключительно электростатическими силами. Это дает возможность альтернативного описания ионных агломератов. Тем не менее концепция ионных пар полезна с химической точки зрения, особенно для таких систем, в которых существует сильная ассоциация в разбавленных растворах и другие силы могут вносить вклад в энергию образования ионных агломератов. Необходимо дальнейшее обсуждение этого вопроса. Ассоциация, обусловленная неэлектростатическими силами, не может быть, конечно, рассмотрена в рамках указанной выше теории Фуосса и Онзагера [14]. [c.213]

    Начавшееся физическое изучение белковых молекул со временем приобретает исключительно важное значение. Физика привнесла в эту область строгость и глубину своих воззрений и концепций, количественные теоретические и экспериментальные методы. Квантовая механика, работы В. -Кеезома (19 6 г.), Д. Дебая (1920 г.), В. Гейглера и Ф. Лондона (1928 г.), Ф. Хунда (1928 г.), Э. Хюккеля (1930 г.), Дж. Леннарда-Джонса (1931 г.), Л. Полинга (1936 г.) и многих других физиков подвели черту под развитием классической органической химии и заложили основы современной теоретической химии (квантовой механики молекул или квантовой химии). Они показали, что помимо валентных взаимодействий атомов существуют и могут оказывать заметное влияние на химическое поведение и формообразование молекул, особенно макромолекул, ранее не принимавшиеся во. внимание невалентные взаимодействия атомов (дисперсионные, электростатические, торсионные, водородные связи). Для познания белков, чувствительных к внешним условиям, использование физических и физико-химических методов, гарантирующих, как правило, не только химическую, но и пространственную целостность молекул, имело важное, часто определяющее значение на всех этапах исследования белков от выделения и очистки до установления пространственной структуры и выяснения механизмов функционирования. [c.66]

    Ясная концепция характерных черт химического поведения ароматических молекул эмпирически была развита очень давно, а в двадцатых годах нашего столетия начала интерпретироваться и находить свое выражение в понятиях электронных теорий химии, развитых Ингольдом [27] и Робинсоном [4]. Возникновение понятия ароматичность связано с химическим поведением некоторых соединений в самых разнообразных реакциях, а также, в некоторой степени, с физическими свойствами, такими, например, как диамагнитная восприимчивость, характерными для ароматических молекул. Ароматический характер обычно связывался с различными типами реакционной способности, а не со свойствами изолированной молекулы в ее основном состоянии, и наиболее ранняя удовлетворительная теория, а именно теория мезомерии, подчеркивала эту типично химическую точку зрения. Затем, в короткий период около 1930 года, история которого хорошо известна, Хюккель, Полинг и другие показали совместимость теории мезомерии и ароматического секстета с квантовой физикой электронов. Исходным пунктом являются два основных метода приближенного количественного описания ароматических систем метод валентных схем (ВС) и метод молекулярных орбит (МО), основные достоинства которых в том, что они хорошо обоснованы с физической точки зрения и что при помонди их можно вычислить термохимическую энергию резонанса — величину, которая может быть измерена. Энергия резонанса является свойством основного состояния изолированной молекулы, оказывающим лишь второстепенное влияние на реакционную способность, и концентрирование на ней внимания типично для физической точки зрения. В теории ароматичности центр тяжести сместился с химического поведения на физические свойства, и это отражает значительно большие успехи (по крайней мере вплоть до последнего времени) полуколичествен- [c.7]

    Важно, что концепция оксовиниленовой активации распада макромолекул при деструкции ПВХ позволила выявить и новые неожиданные возможности эффективной не только термической, но и светостабилизации этого полимера, а также использовать для его стабилизации ранее неизвестные классы химических соединений, в частности, сопряженные диеновые углеводороды, аддукты реакции Дильса-Альдера, протонные кислоты, а-, р-дикарбоновые соединения и др. [34-38, 44-46]. Это также дало возможность выявить новые реальные реакции, протекающие при химической стабилизации ПВХ, в том числе и при применении известных добавок к ПВХ, которые давно используются для стабилизации ПВХ (например, органические фосфиты, эпоксисоединения, протонодонорные соединения и др.), и на этой основе более эффективно управлять процессом старения ПВХ (рис. 5.4). Связь между химическим строением добавок и их эффективностью как стабилизаторов ПВХ определяет возможность научно обоснованного и экономически целесообразного подбора соответствующих стабилизаторов, а также их синергических сочетаний, при создании жестких материалов на основе ПВХ. [c.139]

    В остальном теория Льюиса базируется на концепции, являющейся практически термодинамической. Все изменения, имеющие место во вселенной, происходят таким образом, что в результате этого достигается ббльшая устойчивость изменяющейся системы. Если в процессе химической реакции изменяются валентные связи, а в образовании этих связей участвуют электроны, то можно уверенно постулировать, что химическое превращение будет происходить таким образом, чтобы в этом процессе возрастала устойчивость электронной оболочки. Если элемент не проявляет тенденции вступать в реакции, то устойчивость электронной оболочки в этом элементе достигла, очевидно, исключительно высокой степени. Примером этого являются благородные газы, как на это указывал уже ранее Томсон, излагая свою электронную теорию. Поэтому мы можем рассматривать их в качестве критерия того, какие конфигурации электронов будут наиболее устойчивьши. Так как гелий устойчив, то мы можем заключить, что два электрона в К-оболочке представляют весьма устойчивую конфигурацию. Точно так же, рассматривая структуры остальных благородных газов, мы можем признать, что октет электронов во всех последующих оболочках ведет к электронной устойчивости по крайней мере в тех случаях, когда такая оболочка является внешней электронной оболочкой. [c.472]

    Развитие неорганической химии до 40-х годов XIX в., приведшее к смешению понятий атома, молекулы и эквивалента, имело глубокие исторические корни в концепции Лавуазье, в атомистике Дальтона, в системе Уолластона и в электрохимической системе Берцелиуса. Работы Дюма, Митчерлиха, Персо, Гмелина и других содействовали усилению этого смешения понятий, однако внутренняя логика развития химии должна была рано или поздно привести к их разграничению. Распутывание этого узла противоречий началось в связи с развитием органической химии. Изучение многочисленных органических содинений, отличающихся только относительным числом одних и тех же элементов (С, Н, О), и потребность в систематике таких соединений выдвинули на первый план вопрос о критерии понятия молекулы. Передовые химики 40-х годов — Жерар и Лоран — первые поняли значение этого критерия. Предшествующее развитие органической химии подготовило необходимую объективную почву и условия для возникновения новых идей. Понятие молекулы оказалось тем основным звеном цепи, ухватившись за которое, передовые химики середины XIX в. потянули всю цепь химических понятий и пришли к разграничению понятий атом , молекула и эквивалент . [c.172]

    В литературе большей частью отсутствует ясное понимание места в теории резонанса классических (доквантовых) химических представлений и квантовомеханических идей. Так, Г. В. Быков, излагая взгляды по этому вопросу создателей теории резонанса Л. Полинга и Д. Уэланда противопоставляет ранние высказывания Л. Полинга и Д. Уэланда о квантовомеханическом происхождении теории резонанса более поздним высказываниям Л. Полинга, подчеркивающим роль в этой теории доквантовых структурных представлений. В этой связи Г. В. Быков считает, что взгляды последнего претерпели значительную эволюцию. В действительности же, никакого противоречия в ранних и поздних взглядах этого автора нет. Просто в различные периоды развития квантовой химии он обращал внимание на различные стороны разрабатываемой им концепции. [c.58]


Смотреть страницы где упоминается термин Ранние концепции химической связи: [c.282]    [c.203]    [c.3]   
Смотреть главы в:

Химическая связь -> Ранние концепции химической связи

Химическая связь -> Ранние концепции химической связи

Химическая связь -> Ранние концепции химической связи




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте