Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионное растрескивание влияние среды

    Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллитная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразованию и межкристаллитной коррозии. [c.32]


    Способность к пассивации делает алюминий весьма стойким во многих нейтральных и слабокислых растворах, в окислительных средах и кислотах. Хлориды и другие галогены способны разрушать защитную пленку, поэтому в горячих растворах хлоридов, в щелевых зазорах алюминий и его сплавы могут подвергаться местной язвенной и щелевой коррозии, а также коррозионному растрескиванию. Коррозионная стойкость алюминия понижается в контакте с медью, железом, никелем, серебром, платиной. Столь же неблагоприятное влияние оказывают и катодные добавки в сплавах алюминия. Для алюминия характерно высокое перенапряжение водорода, которое наряду с анодным торможением (окисная пленка) обеспечивает высокую коррозионную стойкость. Примеси тяжелых металлов (железо, медь) понижают химическую стойкость не только из-за нарушения сплошности защитных пленок, но и вследствие облегчения катодного процесса. [c.73]

    В качестве коррозионных сред использовали растворы хлоридов натрия и сульфатов натрия, соляной и серной кислоты, моноэтаноламина и углекислого газа, сероводорода и др. По истечении определенного времени испытаний t = t, напряжения становятся равными пределу текучести металла ат (огт 240 МПа). Неучет влияния напряжений на скорость коррозии заметно завышает это время (t o > t,). С увеличением начального напряжения Оо время до наступления текучести металла уменьшается. При нагружении образцов постоянным смещением напряжения в процессе испытания снижаются. Это указывает на целесообразность оценки стойкости к коррозионному растрескиванию металла путем испытаний образцов постоянным усилием, особенно в средах, вызывающих заметную общую коррозию. [c.108]

    В коррозионно-активных средах особенно опасно возникновение концентрации напряжений, способствующих коррозионному растрескиванию оборудования. Для большей равномерности распределения напряжений вокруг концентраторов напряжений следует понижать концентрацию напряжений выбором соответствующей геометрической формы проточки, оптимального способа соединения деталей и т. д. В некоторых высокопрочных и нержавеющих сталях наблюдается часто сильное изменение структуры металла в зоне термического влияния на расстоянии 10—15 мм от сварного шва. Эта зона имеет, как правило, пониженную коррозионную стойкость, и в ней часто наблюдается коррозионное растрескивание. Это связано с возникновением остаточных напряжений. Наибольшая концентрация напряжений наблюдается при сварке листов внахлестку в зоне, лежащей между швами. Для снятия внутренних напряжений рекомендуется после сварки проводить термическую обработку. При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения. [c.41]


    Козырев В. Н Коваль В. П. Влияние режимов термической обработки на коррозионное растрескивание трубных сталей в среде, содержащей сероводород. — Коррозия и защита в нефтегазовой промышленности, 1977, № 7, с. 6—7. [c.225]

    В этом разделе делается попытка выделить металлургические факторы, влияющие на КР. Однако такое деление осложняется многообразным поведением сплавов при КР в различных средах. Например, некоторые р-сплавы чувствительны к КР в водных средах, фактически устойчивы против КР в условиях высокотемпературного солевого коррозионного растрескивания. Влияние факторов [c.357]

    По истечении определенного времени испытаний t = i , напряжения становятся равными пределу текучести металла (ат 5 240 МПа). Если не учитывать влияния напряжений на скорость коррозии, то это время повышается С увеличением начального напряжения оо время до наступления текучести металла уменьшается. Это указывает на целесообразность оценки стойкости к коррозионному растрескиванию металла путем испытаний образцов постоянным усилием, особенно в средах, вызывающих одновременно общую коррозию. [c.24]

    Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (КР) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации. [c.47]

    И значения приложенных растягивающих напряжений а. С увеличением нагрузки относительное влияние концентратора на время до растрескивания сварных соединений сказывается в меньшей степени по сравнению с основным металлом в связи со значительным влиянием структурного фактора, связанного в рассматриваемом случае с выпадением анодной Р-фазы по линии сплавления сварного соединения. Аналогичное влияние оказывает характер напряжения на долговечность других материалов в средах, вызывающих коррозионное растрескивание. В средах, вызывающих явление деконцентрации, влияние концентраторов проявляется только при большом уровне напряжений. [c.526]

    Большое влияние на склонность металлов и сплавов к коррозионному растрескиванию оказывает температура среды. Некоторые металлы растрескиваются прн нормальной температуре среды (латуни в содержащем аммиак воздухе, дюралюминий и сплавы титана в морской воде). Коррозионное растрескивание большинства металлов и сплавов протекает прп температурах ниже 100 °С. [c.452]

    Глава начинается с достаточно элементарного анализа проблемы ползучести и разрушения конструкционных сплавов под напряжением при высоких температурах и описания различных эффектов, наблюдаемых при воздействии внешней среды. Затем следует краткий обзор высокотемпературной коррозии и обсуждение многочисленных путей ее влияния на механические свойства сплавов, после чего уже непосредственно рассмотрены коррозионная ползучесть и разрушение материалов вследствие коррозии под напряжением. Следует отметить, что в данной главе рассматриваются процессы, протекающие при высоких температурах, как правило выше 0,5 Тт, где Тт — абсолютная температура плавления рассматриваемого сплава. Поэтому в круг обсуждаемых вопросов не входят такие сложные явления, как коррозионное растрескивание под напряжением, охрупчивание при контакте с жидким металлом или понижение сопротивления излому, вызванное поверхностно-активными веществами. По этим вопросам имеются авторитетные обзоры [8, 9]. [c.9]

    Известно, что такие примеси, как сера и фосфор, значительно увеличивают склонность стали к растрескиванию в наводороживающих средах. Стали с низким содержанием серы менее 0,01 % не подвержены растрескиванию независимо от температуры конца прокатки и последующей термической обработки. Для стали с более высоким содержанием серы (0,016 %) температура конца прокатки оказывает заметное влияние чем ниже температура, тем выше склонность стали к растрескиванию [32]. Очень большое значение имеет форма сульфидных включений. Так, если неметаллические включения имеют вытянутую форму, то склонность стали к коррозионному растрескиванию увеличивается с их протяженностью при зтом склонность к растрескиванию растет тем быстрее, чем ниже температура конца прокатки. [c.38]

    Нанесение защитных покрытий уменьшает агрессивное влияние коррозионной среды, что способствует повышению устойчивости стали к коррозионному растрескиванию. Никелевые покрытия обеспечивают защиту от коррозионного растрескивания в хлоридах, щелочах и других средах. Весьма высокий защитный эффект во многих средах дают алюминиевые покрытия. [c.16]


    При коррозионном растрескивании под напряжением в слабо кислых средах, которое вызывается выделяющимся водородом, электрохимическая защита в общем случае не может дать эффекта [2]. Для пояснения этого на рис. 2.20 представлены кривые срок службы — потенциал для углеродистой стали в среде, содержащей сероводород [75]. При pH = 4 стойкость при катодной поляризации действительно заметно повышается (в некотором узком диапазоне потенциалов в результате образования поверхностного слоя Ре5). Однако для длительного защитного действия этот эффект не может быть использован. По результатам измерений видно также, что по мере снижения потенциала, стойкость (по времени до разрушения) уменьшается. Анодная защита от коррозионного растрескивания под напряжением, вызываемого водородом, теоретически возможна, но нерациональна, поскольку при этом усилится равномерная поверхностная коррозия. Коррозионное растрескивание под напряжением под влиянием водорода в углеродистых и низколегированных сталях обычно может развиваться только в присутствии стимуляторов, которые не допускают рекомбинации выделившихся на катоде атомов водорода в молекулы На, вследствие чего в структуру материала может внедриться (диффундировать) повышенное количество водорода (см. рис. 2.1). К числу таких стимуляторов могут быть отнесены, например, гидриды элементов 5 и 6 групп Пери- [c.75]

    Известно, что с увеличением в низколегированной стали содержания никеля уменьшается ее сопротивление коррозионному растрескиванию в сероводородсодержащих средах, однако существенное увеличение содержания никеля (до 30 %) делает углеродистые стали весьма устойчивыми против растрескивания, Однозначных данных о влиянии молибдена на стойкость сталей в сероводородсодержащих средах в литературе не обнаружено. Стали, легированные кобальтом, кремнием и диспрозием, отличаются в указанных средах повышенной стойкостью к коррозионному растрескиванию [8]. [c.120]

    Сера и фосфор оказывают вредное влияние на стойкость сталей к коррозионному растрескиванию в различных, в том числе и сероводородсодержащих, средах. Одна иэ причин этого в том, что сера - промотор абсорбции водорода, а фосфор увеличивает интенсивность наводороживания [19]. [c.120]

    Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва. [c.28]

    Причины, вызывающие межкристаллическую коррозию основного металла в непосредственной близости от шва, еще не совсем ясны. Одной из них может быть негомогенность аустенита при нагревании до температур, близких к солидусу, с последующим выделением вторичных фаз по границам зерен. Коррозия такого вида распространяется по линии, отделяющей шов от основного металла, и называется ножевой. В этой зоне наиболее велика опасность коррозионного растрескивания, которое возникает вследствие одновременного действия коррозионной среды и внутренних напряжений, причем влияние обоих факторов одинаково. [c.101]

    Изложены вопросы коррозионно-механической прочности металлов, влияние коррозионных сред на характеристики ползучести. Описаны новые представления о механизме коррозионного растрескивания и связи его с водородным охрупчиванием. Рассмотрены кинетика и механизм влияния водородного охрупчивания в процессе коррозионного растрескивания различных сталей и сплавов. Показана зависимость этих видов разрушения от различных структурных факторов. Приведены сведения о коррозионном растрескивании высокопрочных алюминиевых и титановых сплавов, механизме этих процессов и способах защиты. [c.4]

    В первой главе обобщены теоретические представления и практические результаты по воздействию среды на процессы ползучести. Эти материалы позволяют осветить изменение кинетики разрушения под напряжением не только в плане механизмов, идентичных коррозионному растрескиванию, когда речь идет о достаточно сильном солевом коррозионном воздействии при повышенных температурах, но и в общем плане, в случае сложного влияния относительно слабых сред таких, как воздух. [c.6]

    Характерное влияние напряжений и остроты концентраторов в средах, вызывающих растрескивание, показано на рис. 54 на примере растрескивания алюминиевого сплава АМгб. Отрицательное влияние концентратора усиливается с увеличением коэффициента концентрации ос и величины приложенных растягивающих напряжений а. С увеличением нагрузки относительное влияние концентратора на время до растрескивания сварных соединений сказывается в меньшей степени по сравнению с основным металлом в связи со значительным влиянием структурного фактора, связанного в рассматриваемом случае с выпадением анодной р-фазы по линии сплавления сварного соединения. Аналогичное влияние оказывают величина напряжений и коэффициент концентрации на долговечность других материалов в средах, вызывающих коррозионное растрескивание. В средах, вызывающих явление деконцентрации, влияние концентраторов проявляется только при большом уровне напряжений. Характерно в этом отношении влияние концентратора на растрескивание стали СтЗсп в увлажненном сероводороде (см. гл. IV, п. 1). В этом случае в связи со специфическим механизмом разрушения, связанным с появлением в процессе испытаний первичных расслоений, параллельных действующим напряжениям, влияние концентратора проявляется только при большом уровне нагрузки. [c.145]

    Для серьезного анализа условий, в которых поверхностное и внутреннее растрескивание становится важным фактором коррозионной ползучести, необходимо более глубокое и систематическое исследование всех аспектов ползучести и разрушения. Пока же, черпая необходимые сведения из работ, не связанных непосредственно с ползучестью, и наблюдая различия в микроструктуре разрушенных образцов после испытаний на коррозионную ползучесть, мы можем лишь строить догадки в отношении влияния среды на высокотемпературное растрескивание прн ползучести. [c.44]

    Горячие соли. Общепринято, что, хотя чистый титан и устойчив против высокотемпературного солевого коррозионного растрескивания, большинство сплавов проявляют некоторую степень чувствительности к КР- Влияние состава и термической обработки особенно полно не аргументировано, однако могут быть сделаны следующие качественные наблюдения. В работе [166] использованы гладкие плоские образцы для определения чувствительности к КР серии бинарных сплавов в среде воздух—хлор при 427 "С. Было показано, что наиболее вредными элементами, которые способствуют растрескиванию при наименьших концентрациях, были А1, Sn, Си, V, Сг, Мп, Ре и Ni. Элементами, требующимися в больших концентрациях для активизации растрескивания, были Zr, Та и Мо. В большинстве опубликованных классификаций указывается, что а-сплавы имеют тенденцию к большей [c.373]

    Как утверждается в настоящее время, гипотеза водородного охрупчивания является полуколичественной и, таким образом, не может быть использована для объяснения отдельных моментов процесса коррозионного растрескивания. Некоторые из факторов среды, влияющих на КР, перечислены ранее. Фактическое влияние водорода при объяснении этих факторов рассматривается ниже  [c.399]

    Исследования [104] по электрохимическому поведению различных титановых сплавов не позволили выявить какие-либо особенности, достаточные для объяснения чувствительности к КР. Поэтому основа чувствительности к КР может быть найдена в металлофизика сплавов безотносительно к опасным компонентам среды. Влияние металлургических факторов на КР является в большей мере качественным, чем влияние механических факторов или факторов среды. К тому же влияние состава и микроструктуры может изменяться под действием среды. Первая часть последующей дискуссии будет ограничена коррозионным растрескиванием в водных растворах. [c.406]

    Влияние структуры на коррозионное растрескивание в других средах не было детально исследовано. Приведенная выше дискуссия для водных растворов в большинстве случаев применима для области 11 роста трещин в метанольных растворах. В таких средах, как горячая соль, вредное влияние алюминия и кислорода и положительное влияние молибдена кажется повторением известного для других сред. [c.413]

    В данном обзоре рассмотрены многие экспериментальные факторы, которые оказывают влияние на чувствительность к коррозионному растрескиванию титановых сплавов. Хотя общая основа была установлена, очевидно, что требуется дальнейший экспериментальный и особенно теоретический анализ. Таким образом, представленный обзор следует рассматривать как прогресс в этом направлении несомненно, что некоторые дискуссионные практические и теоретические факторы в будущем будут преданы забвению. Необходимо подчеркнуть, что многие проблемы КР для специфических пар сплав/среда были решены вскоре после их открытия. Это не означает, однако, что такие проблемы не возникнут в будущем, но можно надеяться, что этот обзор будет полезен при распознании таких проблем. Субкритический рост трещин может происходить по механизму иному, чем при КР. Наиболее важным является рост усталостных трещин. В последние годы много внимания уделялось рассмотрению аналогии между коррозионным растрескиванием и коррозионной усталостью имеются указания и на взаимосвязанность этих процессов. При применении титановых сплавов в авиационно-космической технике и при подвод- [c.431]

    Есть целый ряд случаев, когда характер подготовки поверхности имеет существенное значение. К ним можно отнести электрохимические измерения, изучение коррозионного растрескивания, влияния термообработки, химического состава, технологических факторов и др. При проведении этих измерений точность данных возрастает по мере увеличения чистоты и однородности исследуемой по,верхностп. Значительно упрощается выбор способа подготовки поверхности металла при прозе-дении испытаний в средах, в которых металл корродирует равномерно и относительно интенсивно. В этом случае вследствие быстрого стравливания поверхностного слоя характер предварительной подготовки не оказывает существенного влияния на результаты испытаний. При проведении опытов для получения ориентировочных данных о практическом поведении металла состояние поверхности образцов необходимо приближать к тому, какое имеется у эксплуатируемых изделий. Для ряда коррозионных испытаний характер подготовки поверхности можно выбирать исходя из формы и размера образцов чем меньше и сложнее форма образцов, тем более тщательной [c.57]

    Таким образом, наиболее частая причина отказа — коррозионное растрескивание. Оно является следствием двух одновременно действующих факторов — агрессивности среды и остаточных напряжений в металле. При этом коррозионное растрескивание наблюдается только при растягивающих напряжениях. Аналогичное влияние агресс1шная среда оказывает п на усталость металла. При одновременном воздействии знакопеременных напряжений н агрессивной среды появляется коррозионная усталость металла. [c.48]

    На возникновение коррозиониого растрескивания металлов и на его интенсивность оказывают большое влияние характер агрессивной среды, ее концентрация, температура, структурные особенности металла и др. Наибольшее число разрушений аппаратов из углеродистых и низколегированных сталей наблюдается в растворах щелочей, азотнокислых солей, влажном сероводороде. Известны также отдельные случаи разрушения этих сталей в азотной кислоте, смеси азотной кислоты с серной кислотой и других средах. [c.102]

    Растрескивание латуни имеет смешанный характер межкри-сталлитный и транскристаллитный. Увеличение степени транс-кристаллитности коррозионного растрескивания характеризует относительно большее влияние механического фактора. Транс-кристаллитное растрескивание наблюдается преимущественно у предварительно деформированных нагартованных латуней при приложении относительно больших растягивающих нагрузок и в сравнительно не очень активных средах, например в естественных условиях атмосферы. Наоборот, для латуней, предварительно отожженных и напряженных растяжением более умеренно, для коррозионного растрескивания характерно преимущественное межкристаллитное разрушение. [c.113]

    В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались межкристаллитной коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия. [c.278]

    Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания, В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит [c.236]

    В зависимости от характера коррозионной среды и природы металла для каждого случая существует критическое напряжение, ниже которого склонность металла к коррозионому растрескиванию проявляется слабо. Для стали <Ткр = = 75—80 % (Тт. Время до разрушения зависит от уровня напряжений оно быстро уменьшается при росте напряжений. Увеличение содержания никеля в сталях оказывает благоприятное влияние на стойкость к коррозионному растрескиванию, и при содержании никеля около 45% они становятся не чувствительными к коррозионному растрескиванию (рис. 13). [c.15]

    Влияние агрессивной среды на коррозионное растрескивание высркопегитованных сплавов в сероводородной среде , 42 [c.28]

    Влияние среды и потенциала на коррозионное растрескивание высокопрочных алюминиевых сппавов 27 201 [c.30]

    Как и язвенная коррозия, коррозионное растрескивание под напряжением происходит преимущественно на пассивированных металлах в пределах области критических потенциалов. На уровень предельных потенциалов кроме специфических свойств материалов и сред оказывают влияние также вид и величина механических нагрузок. Съем металла (потеря массы) при коррозионном растрескивании под напряжением может быть чрезвычайно малым или даже равным нулю. Разрушение может развиваться вдоль границ зерен (межкристаллитно) или через зерна (транскристаллитно). [c.71]

    Влияние состава стали и среды на коррозионное растрескивание. Из всего многообразия материалов и сред, вызывающих их КР, ограничимся разбором наиболее часТо применимых в компрессоростроении сталей и некоторых специфических сред нитратов, сульфидосодержащих (сероводородсодержащих). [c.68]

    Установлено, что на коррозионно-механическую стойкость стали оказывает влияние даже тип печи, где проводилась выплавка. Это связано, по-видимому, с различной загрязненностью сталей примесями и газами. Сталь, выплавленная электродуго-вым методом, обладает более низкой коррозионно-механической стойкостью, чем та же сталь, но подвергнутая электрошла-ковому переплаву (ЭШП). Причина, вероятно, в том, что сталь после ЭШП содержит значительно меньще неметаллических включений. Заметно повышает сопротивление стали коррозионному растрескиванию вакуумно-дуговой переплав. В целом рафинирование (оЧистка) сталей тем или иным методом повышает коррозионно-механическую стойкость материала, причем эффективность рафинирования возрастает по мере усиления агрессивности среды, в частности, по мере ее подкисления [3]. [c.127]

    Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д. [c.4]

    Публикация переводов известной зарубежной серии издательства Пленум Пресс (США) под редакцией М. Фонтана и Р. Стэйла Достижения науки о коррозии и технологии защиты от нее началась в нашей стране с 6-го тома В этом томе наряду с другими актуальными проблемами была детально рассмотрена проблема коррозионного растрескивания и водородного охрупчивания конструкционных урановых сплавов. В следующем 7-м томе вопросам влияния внешней среды на процесс разрушения механически нагруженных систем уделено заметно большее внимание. [c.6]

    В то же время в случаях ускоренного роста трещин при окислении предполагается [18—21, 173, 177], что стимулирующее влияние окисления на поверхностное растрескивание и распространение трещин аналогично некоторым механизмам коррозионного растрескивания, таким как расклинивающее действие окисла [102] или растрескивание путем разрушения поверхностной пленки и репассивации [101, 178—182]. В обоих случаях ускорение растрескивания объясняется усиленной напряжением коррозией, заключающейся в чередующемся разрушении оксидной пленки и последующем быстром окислении незащищенного металла. Повышение скорости ползучести в средах, содержащих Na l, объяснялось либо подобным же ускорением растрескивания [183], либо общей коррозией под действием Na l [40], либо одновременным действием обоих факторов [184]. В любом случае следовало ожидать уменьшения пластичности, что и наблюдалось в действительности [40]. [c.45]

    Влияние потенциала на коррозионное растрескивание в концентрированных растворах, содержащих р-, не было исследовано детально. Предварительные данные указывают на то, что минимальная величина /Сткр находится в пределах потенциалов от —500 мВ до —1000 мВ и что имеются области катодной и анодной защиты. Наиболее общая точка зрения на влияние приложенного потенциала сводится к тому, что распространение субкритической трещины под действием среды может быть мгновенно приостановлено путем смещения приложенного потенциала в катодную область. Такой эффект не может быть достигнут в сильнокислых растворах [97]. [c.327]


Смотреть страницы где упоминается термин Коррозионное растрескивание влияние среды: [c.455]    [c.143]    [c.21]    [c.76]    [c.46]   
Структура коррозия металлов и сплавов (1989) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние коррозионных пар

Коррозионная pH среды

Коррозионное растрескивание под



© 2024 chem21.info Реклама на сайте