Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан теплопроводность

    Титан является основным конструкционным материалом, используемым в производстве хлора. Возрастает количество холодильников, изготовляемых из титана. Они дешевле стеклянных и занимают в 8 раз меньше места. Благодаря лучшей теплопроводности, возможности применения более эффективной конструкции и отсутствию необходимости в ремонте, титановые холодильники окупаются за 13 месяцев. Металл широко применяется также для изготовления труб разбрызгивателей. Возможно его использование для крышек и других деталей электролизеров. [c.217]


    Плавка титановой губ-к и. Особенности переплавки титановой губки в слитки обусловлены высокой активностью расплавленного титана, реагирующего со всеми огнеупорными материалами и графитом. Наиболее приемлемой оказалась плавка в электродуговых печах в атмосфере инертных газов или в вакууме 10 мм рт.ст.) с кристаллизатором из красной меди, охлаждаемым водой. Выбор меди обусловлен ее высокой теплопроводностью, благодаря чему внутренняя поверхность кристаллизатора имеет температуру, при которой титан не реагирует с медью и не приваривается к ней. [c.275]

    Титан очень стоек к коррозии и эрозии и допускает высокие скорости воды (примерно 9 м/с). Микроорганизмы могут влиять на него при умеренных скоростях воды, но это не приводит к образованию коррозионных язв. Титан дорог и имеет низкую теплопроводность, но изготовленные из него трубки при малой толщине стенок (примерно 0,5 мм) могут конкурировать с трубками из других материалов, пригодных при работе в сильно агрессивных водах. [c.57]

    Значительный интерес представляют металлонаполненные полимеры [57] (металлополимеры), где наполнителями служат порошкообразные металлы или металлические волокна (алюминий, никель, сталь, олово, кадмий, бериллий, бор, вольфрам, титан, лакированные железо и медь, магний н т. д.). Такие металлополимеры отличаются высокой прочностью (особенно в случае применения волокон), термостойкостью, тепло- и электропроводностью. Прочность в некоторых случаях обусловлена химическим взаимодействием полимера с металлом (образование комплексов за счет я-электронов двойных связей, реакция карбоксильных групп с окислами на поверхности металла и т. д.) наряду с физическим взаимодействием. Некоторые полимеры этого типа вследствие своей дешевизны и доступности заменяют цветные и драгоценные металлы в производстве вкладышей подшипников, изделий с высокой теплопроводностью и низким коэффициентом термического расширения, другие применяются в радиотехнике, для защиты от радиации (свинцовый наполнитель), при изготовлении магнитных лент, каталитических систем (наполнитель — платина, палладий, родий, иридий) и т. д. [c.475]

    По сравнению с традиционно используемыми материалами для клапанных пластин титан и его сплавы, обладая близкими прочностными характеристиками, имеют ряд существенно отличных свойств низкую теплопроводность, чувствительность к надрезам, склонность к самовозгоранию и т. д. Поэтому технологический Процесс изготовления пластин из титана и его сплавов нужно разрабатывать с учетом специфических характеристик применяемого материала..  [c.176]

    Растворы соляной кислоты характеризуются большой коррозионной агрессивностью. Практически ни один из металлических материалов, широко применяемых в технике, неустойчив в растворах соляной кислоты. Неустойчива этой среде и титан [1]. Поэтому весьма актуальной задачей является исследование коррозионных свойств новых конструкционных материалов и разработка методов защиты доступных материалов. В последние годы внимание исследователей привлекает нитрид титана как новый конструкционный и электродный материал, обладающий высокой теплопроводностью и электропроводностью. [c.52]


    Многие легирующие элементы (титан, ванадий, алюминий, вольфрам, медь, молибден, хром, олово, марганец, никель) повышают твердость Б. ч., кремний и сера уменьшают ее. Увеличение содержания цементита снижает теплопроводность чугунов, вследствие чего они склонны к образованию холодных трещин. Б. ч. отличаются хорошей жидкотекучестью, повышающейся с увеличением содержания углерода и кремния. Однако значительная линейная усадка и грубая первичная структура обусловливают повышенную склонность Б. ч. к образованию горячих трещин.Наибольшей износостойкостью характеризуются Б. ч., содержащие 12—24% Сг (рис., г). Чугуны, содержащие 34% Сг и [c.126]

    Их мех. св-ва улучшают нормализацией, закалкой и отпуском. Из таких чугунов изготовляют блоки цилиндров, станины, поршневые кольца, гильзы, поршни, коленчатые и распределительные валы, головки различных двигателей, корпуса, штампы. К износостойким (табл. 1 иа с. 687) относятся средне- и высоколегированные (хромом, никелем, молибденом) чугуны, характеризующиеся мартенситной структурой и твердыми карбидами. Эти чугуны идут на изготовление деталей, эксплуатируемых при интенсивном абразивном изнашивании. Для получения необходимой структуры и св-в чугуны иногда подвергают закалке, обработке холодом (см. Холодом обработка металлов). Распространен износостойкий чугун нихард (см. также Износостойкий чугун). Антифрикционные чугуны относятся к низколегированным. Кроме высокой износостойкости, они отличаются небольшим коэфф. трения, высокой теплопроводностью, хорошей обрабатываемостью, прирабатывае-мостью, сопротивлением задирам. Такие св-ва обусловливаются наличием в структуре мягкой основы (перлита, феррита) и сфероидальных карбидов или фосфидной эвтектика. Различают серые (марки АЧС), ковкие (марки АЧК) и высокопрочные (марки АЧВ) антифрикционные чугуны (табл. 2). Их легируют хромом (до 0,4%), никелем (до 0,4%), титаном (до 0,1%), медью (0,3—1,5%), сурь- [c.688]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Из всех тугоплавких металлов титан в нормальных условиях имеет наибольшие теплоемкость и коэффициент термического линейного расширения, самую низкую теплопроводность (в 10 раз меньшую, чем вольфрам). [c.11]

    Плавка титановой губки. Титановую губку превращают в слитки, пригодные для дальнейшей обработки, в дуговых электропечах. Плавку проводят в атмосфере инертных газов или в вакууме ( 5-10 мм рт. ст.). При плавке в вакууме лучше удаляются адсорбированные газы и летучие примеси (рис. ИЗ). Стенки печи для плавки титана, являющейся одновременно и кристаллизатором, выполняют из красной меди и охлаждают водой. Выбор меди обусловлен ее высокой теплопроводностью, благодаря чему внутренняя поверхность стенки имеет низкую температуру, при которой титан не реагирует с медью. После первой переплавки слиток недостаточно однороден его вторично переплавляют. Содержание примесей в титане марки ВТ-1 (технически чистый титан) не более 0,3% Fe, 0,15% Si, 0,1% С, [c.419]

    Удельная теплопроводность газовых или жидких пленок. Титан имеет тенденцию способствовать капельной конденсации, которая предпочтительней пленочной [572]. [c.247]

    Теплопроводность титана составляет 14,0 Вт/(м-К), что несколько ниже теплопроводности легированной стали. Материал хорошо куется, штампуется, обрабатывается резанием. Сварка изделий из титана производится вольфрамовым электродом в защитной атмосфере аргона. В последнее время титан используется для изготовления широкого ассортимента труб, листа, проката. В связи с увеличением производства титан будет все шире применяться в химическом аппаратостроении. [c.23]

    На нескольких зарубежных ТЭС, конденсаторы которых охлаждаются морской водой, проведено опробование трубок из титана. Защитная оксидная пленка на титане оказалась достаточно устойчивой против коррозионного и эрозионного воздействия даже при содержании в воде абразивных примесей и очень больших скоростях воды (более 5,5 м/с). К продуктам жизнедеятельности микроорганизмов, к действию хлоридов, сероводорода и аммиака титан нечувствителен. По сравнению с медными сплавами теплопроводность титана меньше, но его большая прочность и коррозионная стойкость позволяют снизить толщину стенок титановых трубок до 0,6—0,7 мм. Смогут ли конкурировать тонкостенные трубки из дорогого титана с трубками из других более дешевых материалов, покажет будущее. [c.84]


    Металлические покрытия, нанесенные на бериллий, молибден, вольфрам, титан, тантал, цирконий, ниобий, торий и уран, служат для облегчения пайки, в качестве защитной меры против окисления при повышенных температурах (чаще свыше 300 и 450°С, для вольфрама свыше 600°С), а для некоторых из этих металлов (молибдена, вольфрама, тантала, ниобия) —для понижения теплопроводности. Эти виды обработки приобрели большое значение в связи с требованиями космонавтики. [c.389]

    Использование ОКГ для сварки ограничивается тем, что значительная часть материала в зоне сварки испаряется и распыляется. Характер испарения и количество испаряемого материала зависят от теплопроводности и отражательной способности поверхности данного материала. Так, например, медь, алюминий и ряд сплавов вследствие низкого давления паров и высокой теплопроводности довольно легко свариваются с помощью ОКГ, а титан и бериллий — плохо. Металлы группы железа занимают промежуточное положение. [c.19]

    При переработке в плазменной струе порошок полимера вводится в плазму ионизированного гелия или аргона при 3000 °С и с высокой скоростью напыляется на поверхность. Этим методом можно нанести покрытие толщиной 0,01—5 мм на титан, алюминий или сталь.. Микропористость покрытий можно устранить полированием. Теплопроводность поли-л-окси-бензойной кислоты в 3—5 раз выще, чем у других полимеров. Такой полимер может легко обрабатываться механическим способом. [c.346]

    Для выравнивания температуры на поверхности измерительного сосуда и термоприемника последние изготовляют из металла с хорошей теплопроводностью (титан) [1, 7, 71], что одновременно способствует уменьшению тепловой инерционности. Изготовление ячейки плавления из металла позволяет уменьшить толщину стенок до 0,2 мм и обеспечить хорошую соосность и равномерность слоя вещества. [c.94]

    Материалами для изготовления абсорбционной аппаратуры служат кислотоупорный кирпич, керамика, эмаль, плавленый кварц, стекло, графит, некоторые виды пластических масс — фаолит, винипласт на основе стекловолокна и эпоксидных смол. Из металлов лишь тантал выдерживает кипящую концентрированную соляную кислоту, но применение танталовой аппаратуры крайне дорого. Титан выдерживает только невысокие температуры разбавленной соляной кислоты. Поэтому все большее применение находит аппаратура на основе графитовых материалов, работающая в кипящей соляной кислоте любой концентрации, имеющая большую механическую прочность и теплопроводность по сравнению с керамической аппаратурой [c.215]

    При комнатной температуре (20 С) титан менее теплопроводен, чем обычная конструкционная сталь. Однако коэффициент теплопроводности титана при температурах выше 500°С несколько больше, чем у стали. Поэтому прогрев заготовок и изделий из титана и его сплавов в процессе горячей механической и термической обработок занимает в конечном итоге меньше времени, чем у стали. [c.495]

    Эти металлы отличаются высокой механической прочностью при малой плотности. Так титан почти в два раза легче стали. Оба металла имеют малую скорость испарения, низкую теплопроводность, малый температурный коэффициент линейного расширения, близкий к коэффициенту некоторых марок стекла и керамики. При температуре 700°С и выше у титана и циркония происходит рекристаллизация, что приводит к снижению прочности и твердости. Титан и цирконий обладают исключительной способностью поглощать кислород, водород, азот и удерживать их в широком интервале температур. Поэтому эти металлы нашли применение в качестве газопоглотителей, в электроразрядных насосах, в ряде конструкционных деталей, где также используется их низкая тепло-, проводность. Более подробно о свойствах тугоплавких металлов см [2, 9, 20]. [c.49]

    Метод [12] основан на регистрации разности теплопроводности газа-носителя и исследуемого экстрагированного газа — водорода. Для регистрации тецлолроводности водорода наиболее подходящим фоном служит аргон, так как его теплопроводность в десять раз меньше, чем у водорода. Чистый аргон марки А очищают дополнительно от кислородсодержащих примесей губчатым титаном при температуре 750° С. [c.21]

    Иридиевые покрытия имеют оловян-но-белый цвет, температура плавления 2440°С, электропроводность в 3,3 раза, а теплопроводность в 5 раз ниже, чем серебряных. Иридиевые покрытия устойчивы в минеральных и органических кислотах, нашли применение для защиты от коррозии при высоких температурах (выше 800°С) таких металлов, как медь, никель, титан, молибден и их сплавы. [c.190]

    Для очистки отходящих газов производств и отработавших газов автотранспорта от органических веществ и СО были изготовлены опытные партии платинопалладиевого катализатора П-7 (ППК). Катализатор представляет собой смесь Pt и Pd, нанесенную на оксид алюминия. Степень превращения оксида углерода на этом катализаторе при объемных скоростях 36 000-140000 ч и концентрации СО в исходной смеси 1%, (об.) при 300 °С составляют 86 и 56% соответственно [34, с. 10-13]. Помимо AI2O3 для катализаторов платиновой группы применяют металлические носители-нихром, титан [18] и др. Эти носители практически непористые, но благодаря высокой теплопроводности обеспечивают постоянство температуры в каталитических реакторах. Кроме того, таким катализаторам можно придать разнообразную форму (спирали, проволоки), что необходимо для некоторых устройств, например, каталитических анализаторов. [c.44]

    Критическая т-ра и критическое магнитное поле — более или менее стабильные характеристики материала данного состава. Критическая плотность тока — крайне структурно чувствительная характеристика, зависящая от способа получения, обработки и др. У VgGa, напр., она составляет 2,9-10 а/с.ч в поле 120 кэ и 8,5-10 а/см в поле 200 кэ. Чтобы улучшить стабильность С. м. по отношению к спонтанному переходу в нормальное состояние в докритиче-ском режиме, их покрывают нормальным (пе сверхпроводящим) металлом с высокой электро- и теплопроводностью (чаще всего медью). По соотношению количества нормального металла и сверхпроводника и по связанному с этим поведению материала в магнитном поле под токовой нагрузкой С. м. подразделяют на полностью стабилизированные, частично стабилизированные и нестабилизирован-ные. К наиболее распространенным С. м. относятся сплавы ниобия, в особенности ниобий — титан, носкольку из этих сплавов обычными методами плавки, механической и термической обработки можно изготовлять различного типа проводники (проволоку, кабели, шины и др.). Металлиды, хотя и обладают гораздо более высокими критическими параметрами, из- [c.345]

    Из перечисленных выше новых конструкционных металлов и сплавов наибольшее распространение в химическом машиностроении нашел титан. Титан обладает исключительно высокими прочностными показателями, л<аростойкостью и жаропрочностью, малым удельным весом, высокой сопротивляемостью к эрозии и к усталостным напряжениям, отсутствием склонности к межкристаллитной коррозии, благоприятными технологическими свойствами и по своей коррозионной стойкости превосходит в ряде случаев высоколегированные кислотостойкие стали. Ниже приводятся основные физикомеханические свойства технически чистого титана марки ВТ1 (0,3% Ре 0,15% 51 0,05% С 0,15% Ог 0,015% На 0,04% N2 остальное Т1). Уд. вес 4,5 з/сж температура плавления 1725° С коэффициент линейного расширения (в интервале О—100° С) 8,2 10- теплопроводность 0,039кал/см-сек-град, электропроводность по сравнению с электропроводностью меди, принятой за 100, 3,1 предел прочности 45—60 кг/мм предел текучести 25—50 кг/мм относительное удлинение — не менее 25%, относительное сужение не менее 50% твердость по Бринелю 160—200 модуль упругости 10 500—11 ООО кг/мм . [c.247]


Смотреть страницы где упоминается термин Титан теплопроводность: [c.33]    [c.15]    [c.523]    [c.694]    [c.140]    [c.45]    [c.101]    [c.158]    [c.72]    [c.130]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.9 , c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Свойства титана и титановых сплавов Теплоемкость, коэффициенты теплопроводности ц линейного расширения титана некоторых марок



© 2024 chem21.info Реклама на сайте