Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кофермент в биосинтезе

    Стартовой реакцией биосинтеза жирных кислот считается (и это вполне надежно доказано) образование так называемого активного ацетата из пировиноградной кислоты и кофермента А. Суммарное уравнение реакции включает нуклеофильную атаку тиольной группой углерода карбонильной функции и декарбоксилирование пиру-ватного фрагмента с сопутствующими окислительно-восстановительными процессами (схема 5.4.1). [c.131]


    РИС. 14-10. Биосинтез лейцина, изолейцина, валина и кофермента А. [c.113]

    Свойства витаминов и история их открытия. Функции соответствующих коферментов, а также пути биосинтеза некоторых витаминов рассматриваются в основном тексте. [c.378]

    Фолиевая кислота очень широко распространена как в растительных, так и в животных организмах, что объясняется ее важной ролью. Этот кофермент участвует во многих реакциях биосинтеза, прежде всего в реакциях синтеза азотистых пуриновых оснований нуклеиновых кислот. Активной формой фолиевой кислоты является ее восстановленная форма - 5,6,7,8-тетрагидро-фолиевая кислота, которая образуется под влиянием специального фермента - тетрагидрофолатредуктазы. Ингибиторы этого фермента могут быть использованы в тех случаях, когда необходимо замедлить или прекратить синтез пуриновых оснований, а значит - и синтез нуклеиновых кислот, например при опухолевых процессах. Известны аналоги тетрагидрофолата -аминоптерин и аметоптерин, которые используются, например при лечении острой лейкемии. Аналоги фолиевой кислоты широко применяют в составе противомикробных средств, среди которых наиболее известны стрептоцид и различные сульфамидные препараты, являющиеся аналогами пара-амино-бензойной кислоты, входящей в состав фолата. Структуры фолиевой кислоты и ее коферментной формы приведены на рис. 14. [c.39]

    Карбоновые кислоты с длинными цепями встречаются в жирах, которые представляют собой природные эфиры этих кислот с глицерином (Н0СН2СН(ОН)СИ2ОН). Вот почему эти кислоты часто называют жирными кислотами. Наиболее распространенными жирными кислотами являются пальмитиновая и стеариновая ( ie- и ig-кислоты соответственно). Примером биологической роли кофермента А может слу кить его участие в биосинтезе стеариновой кислот1Л (рис. 19-4). [c.137]

    Первая стадия биосинтеза А.-17а-гидроксилирование Зр-гидрокси-5-прегнен-20-она (прегненолона, ф-ла III) или 4-прегнен-3,20-днона (прогестерона) с участием кофермента никотинамидадениндинуклеотидфосфата (НАДФН) и Oj. Затем под действием ферментов десмолаз отщепляется боковая цепь и образуются 17-кетостероиды, напр. Зр-гид-рокси-5-андрост-17-он (дегидроэпиандростерон). А. стимулируют определенные этапы сперматогенеза (андрогенное действие) и развитие вторичных половых признаков (анабо-лич. эффект). [c.162]

    VJ,Ha современном этапе развития витаминологии ученых стали интересовать вопросы механизма действия витаминов. Установлено, что для выполнения биокаталитических функций значительная часть витаминов должна превращаться в клетках организма в активную форму — кофермент. Это открывает путь для искусственного создания коферментов вне организма с целью использования их в медицине взамен витаминов. Это особенно важно при заболеваниях, связанных с нарушением процесса внутриклеточного биосинтеза коферментов из витаминов. Примером искусственного создания кофермента является синтетическая кокарбоксилаза (эфир тиамина и пирофосфорной кислоты). [c.379]


    Необходимо отметить, что ацетил-КоА образуется и при катаболизме жиров, I. e. это соединение объединяет метаболические пути углеводов н жиров. Ацетил, переносимый коферментом А, как в клетках животных, так и растений, далее используется в биосинтезе или окисляется до Oi и HjO. [c.340]

    НОГО расщепления может превращаться в полуальдегид малоновой кис лоты и в малонил-СоА (рис. 9-6) он может быть также использован ка1 предшественник в биосинтезе пантотеновой кислоты и кофермента г (рис. 14-10), а также в биосинтезе пептидов карнозина ) (р-аланилгисти дина) и его Н -метилпроизводного, ансерина. Высокие концентраци  [c.167]

    В издании рассмотрены все основные классы природных соединений, для которых приведены кпассификации, особенности молекулярной структуры, таблицы типичных представителей, схемы характерных химических реакций, значимые медико-биологические свойства, пути биосинтеза, природные источники При создании книги использована оригинальная литература по 2000 год вкпючительно Содержание книги отражено в 13 главах Введение, Простейшие бифункциональные природные соединения. Углеводы, Аминокислоты, пептиды и белки. Липиды жирные кислоты и их производные, Изопреноиды-1, Изопреноиды-И, от сесквитерпенов до политерпенов. Фенольные соединения. Алкалоиды и порфирины. Витамины и коферменты, Антибиотики, Разные группы природных соединений, Металло-знзимы, Предметный указатель [c.2]

    Другой интересный кофермент N-гликозидной структуры — кофермент А (СоА, oA-SH), который участвует в биохимических реакциях переноса ацильного фрагмента п vivo и образует при биосинтезе большинства классов природных соединений интермедиат 0-S- O- H3. N-гликозидом является и ко-фермент S-аденозилмети-онин, осуществляющий перенос мети-леной группы в биосинтетических реакциях (схема 3.6.22). [c.67]

    Биологическое действие. Специфич. ф-ция водорастворимых В. (кроме аскорбиновой к-ты) в организме-образование коферментов и простетич. групп ферментов. Так, тиамин в форме тиаминдифосфата-кофермент пируватдегид-рогеназы, а-кетоглутаратдегидрогеназы и транскетолазы витамин Bg-предшественник пиридоксальфосфата (кофер-меита трансаминаз и др. ферментов азотистого обмена). Связанные с разл. В. ферменты принимают участие во мн. важнейших процессах обмена в-в энергетич. обмене (тиамин, рибофлавин, витамин РР), биосинтезе и превращениях аминокислот (витамин В , В 2), жирных к-т (пантотеновая к-та), пуриновых и пиримидиновых оснований (фолацин), образовании мн. физиологически важных соед.-ацетилхолина, стероидов и т.п. [c.388]

    З-метил-Ьметионин содержится во многих овощах более всего его в листьях кочанной капусты, в кольраби, сельдерее, томатах. В настоящее время в Японии и России он исследуется в связи с широким спектром его медицинских свойств. 3-аденозил-1-мети-онин — кофермент, участвующий в реакциях биосинтеза, связанных с переносом метильной группы. Молекула [c.351]

    HjN Hj Hj OOH-кристаллы т. пл. 200 С раств. в воде, плохо-в спирте рХд СООН и NH соотв. 3,6 и 10,19, р/-6,9. Структурный фрагмент кофермента А, пантотено-вой к-ты, ансерина и карнозина. Биосинтез а-декарбокси- [c.81]

    История изучения фотосинтеза начинается с 1881 г., когда Ю.Л. Мейер доказал, что фотосинтез протекает в структурах листьев растений - хлоро-пластах. В 20-х годах XX в. К.А. Тимирязев исследовал роль специальных структур - пигментов, называемых хлорофиллами, в поглощении солнечного света (особенно красного и синего) и использовании световой энергии в фотосинтезе. В 1937 г. Р. Хилл открыл фотолиз воды, или фотохимическое окисление воды и образование кислорода, а в 50-х годах М. Калвин с сотрудниками изучили так называемую темновую стадию, во время которой образуются органические вещества. Фотосинтез протекает в хлоропла-стах, которые содержат все необходимое для синтеза органических соединений фоточувствительные пигменты, переносчики электронов, ферменты, коферменты, различные органические соединения, используемые в ходе биосинтеза на темновой стадии. Световая стадия фотосинтеза показана на рис. 39 и может быть описана суммарным уравнением  [c.92]

    Н.-мономерные звенья и промежут. продукты биосинтеза нуклеиновых кислот и нуклеотидкоферментов (см. Коферменты), участники мн. др. процессов в обмене в-в (см., напр., Аденозинфосфорные кислоты), исходные в-ва для хим. и хим.-ферментативного синтеза олиго- и полинуклеотидов. Они широко применяются в биол. исследованиях. Так, мн. нуклеозид-5 -трифосфаты, модифицированные по моносаха-ридному остатку (с заменой гидроксила в положении 3 на атом Н, др. атом или группу), включаются с помощью полимераз в цепь нуклеиновой к-ты, обрывая ее рост (терми-нация цепи). Благодаря этому такие Н. широко используют при выяснении первичной структуры нуклеиновых к-т (метод Сенгера). [c.305]

    Биол. роль П. к. обусловлена ее участием в биосинтезе кофермента А (КоА, KoASH ф-ла П)-мол. м. 767,54 бесцв. кристаллы хорошо раств. в воде 260 нм (pH 2) S 14,6-10 . КоА-акцептор и переносчик разл. кислотных остатков (СМ. Коферменты). Реакционноспособной частью [c.443]


    Биосинтез Ф. включает ацилирование in-глицеро-З-фос-фата действием ацил-кофермента А (ф >мент - ацилтранс-фераза), образующаяся фосфатцдовая к-та в р-ции с [c.126]

    Ц.- кодируемая заменимая а-аминокислота. Ц. входит в состав белков и нек-рых пептидов (напр., глутатиона). Особенно много Ц. в кератинах. Биосинтез Ц. в растениях и микроорганизмах осуществляется тутем замены ОН на 8Н в серине. В организме животных образуется из метионина, распадается до цистамина. Характерная особенность Д.- его способность подвергаться в составе молекулы белка самопроизвольному окислению с образованием остатков цистина. Ц. участвует в биосинтезе цистина, глутатиона, таурина и кофермента А. [c.388]

    Установлено, что первые два соединения участвуют в биосинтезе липидов типа лецитинов. Из нуклеотидных коферментов, содержащих аминокислоты, наиболее изученными являются производные так называемой мурамовой кислоты — уридиндлфосфат Ы-ацетил-З-О-а-карбоксиэтил-глюкозамина (ХХУШд). [c.241]

    Эти реакции являются удобным способом синтеза меченных изотопом алкилкобаламинов, в том числе избирательно обогащенных кобал-аминов, представляющих интерес для ЯМР-исследований [169]. Биосинтез 5 -дезоксиаденозилкобаламина основан на точно таком же типе реакций с участием АТР в качестве субстрата [170]. В12-аденозилтранс-фераза катализирует нуклеофильное замещение прн -углероде АТР с образованием кофермента и неорганического триполифосфата. [c.288]

    В некоторых случаях конечной стадией биосинтеза функционального активного белка является ковалентное присоединение простетической группы, участвующей в формировании активного участка фермента. Например, биотин и липоевая кислота ферментативно присоединяются к нуждающимся в них ферментам. Рибофлавин ковалентно связывается с некоторыми белками, а группа гема — с цитохромом с. Нековалентно связанные коферменты присоединяются к пептидным цепям в строго определенные моменты — вероятно, еще до завершения синтеза всей полипептидной цепи. [c.497]

    Во время переноса одноуглеродных остатков в структуре кофермента - те-трагидрофолиевой кислоты (ТГФ) - происходит образование мостика между атомом азота в пятом положении птеридина и азотом иара-аминобензойной кислоты (на рис. 14 не показан) за счет переносимого фрагмента. Последний затем включается в синтезирующееся пуриновое кольцо или в виде группы СН3 входит в состав тимина при синтезе пиримидиновых оснований. Кроме того, ТГФ участвует в реакциях биосинтеза аминокислот, а именно в превращении серина в глицин и в переносе метильной группы при биосинтезе метионина. [c.39]

    Ферменты образуются только в живых клетках, но тем не менее многие из них можно выделить из клеток и использовать для биосинтеза вне клеток (/я viiro). Каталитическая активность ферментов проявляется при участии низкомолекулярных соединений, называемых коферментами. Кроме уже названных аденозинфосфатов имеется еще ряд наиболее важных коферментов. [c.327]

    Первым открытым нуклеотидным коферментом был никотин-амидадениндинуклеотид (NAD+, 10), который был обнаружен в начале XX века Харденом и Янчом как температурно-стабильный кофактор спиртовой ферментации. Вслед за развитием метода радиоактивных меток и техникой мягкого выделения (например, ионообменная хроматография) были обнаружены многие другие коферменты [7]. Они принимают участие в биологических реакциях окисления-восстановления, переноса групп, в реакциях синтеза полимеров. Эти коферменты будут обсуждены в настоящей главе более детально позднее. Другие же важные встречающиеся в природе эфиры фосфорной кислоты, такие как составляющие клеточных мембран (фосфолипиды и техоевые кислоты) или участвующие в биосинтезе природных соединений (таких, как терпены или стероиды) здесь обсуждаться не будут, но будут рассмотрены в других главах, посвященных природным продуктам. [c.134]


Смотреть страницы где упоминается термин Кофермент в биосинтезе: [c.601]    [c.395]    [c.264]    [c.556]    [c.595]    [c.18]    [c.135]    [c.137]    [c.383]    [c.489]    [c.599]    [c.81]    [c.239]    [c.239]    [c.239]    [c.315]    [c.625]    [c.112]    [c.127]    [c.735]    [c.216]    [c.279]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Коферменты



© 2025 chem21.info Реклама на сайте