Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термический крекинг под давлением кинетика

    Исследования влияния физико-химических факторов (температуры, давления, глубины разложения и др.) на состав продуктов и кинетику термического крекинга индивидуальных алканов были предметом многочисленных работ. Экспериментальные данные о зависимости состава продуктов термического крекинга алканов от температуры, давления и глубины разложения позволяют сделать определенные выводы, независимо от того, каких представлений придерживаться о механизме крекинга алканов. Естественно, что любая теория, призванная дать правильное объяснение фактам, должна будет считаться с выводами, которые получены на основе обстоятельных экспериментальных материалов. [c.77]


    Первые исследования состава продуктов и кинетики термического крекинга пропана были поставлены динамическим методом при атмосферном давлении [14]. Состав продуктов термического крекинга пропана по данным различных работ [15, 17, 32, 185—187] представлен в табл. 17. Главными направлениями распада пропана являются реакции дегидрогенизации и деметанизации. Кроме основных продуктов распа- 90 [c.90]

    Кинетика и механизм термического крекинга сопряженных диенов мало изучены. В одной из данных работ [390] было показано, что распад дивинила является сложной цепной реакцией, кинетика которой при 570—620 °С, пониженном давлении и невысоких степенях конверсии описывается законом первого порядка. В этой же работе было показано, что цепной характер реакции совместим с зависимостью мономолекулярной константы скорости от давления. С увеличением степени конверсии распад дивинила начинает заметно тормозиться продуктами распада. [c.231]

    Кинетика процесса термического крекинга в жидкой и в паровой фазах под давлением изучена недостаточно, нет достоверных качественных и количественных показателей процесса. Однако известно, что при крекинге в паровой фазе повышение давления значительно ускоряет такие вторичные реакции, как полимеризация, конденсация непредельных и ароматических углеводородов и др., что отражается на качестве получаемых продуктов. [c.43]

    Опыт показывает-, что при нагревании паров углеводородов особенно при низком давлении (порядка 0,13—0,27 кПа или ниже) образуются свободные радикалы. Поэтому в основу объяснения кинетики крекинга углеводородов была положена идея цепного характера процесса с участием свободных радикалов. Хотя непосредственных данных для суждения о тех элементарных процессах, которые протекают при термическом крекинге углеводородов, пока нет, все же можно предложить схемы реакций с участием свободных радикалов, хорошо согласующиеся с опытными данными о выходах конечных продуктов различной природы. [c.248]

    Как показывает опыт, кинетика термического крекинга, проводимого при давлениях от 101,3 до 5-10 кПа при температуре 500—600 °С, хорошо согласуется с уравнением (36). [c.262]

    Цепными являются многие процессы окисления и горения, крекинга, полимеризации, галоидирования и др. Опыт показывает, что при. нагревании паров углеводородов, особенно под низким давлением (порядка 1—2 мм рт.ст. и ниже), образуются свободные радикалы. Поэтому в основу объяснения кинетики крекинга углеводородов была положена идея цепного механизма процесса с участием свободных радикалов. Хотя непосредственных данных для суждения о тех элементарных процессах, которые протекают при термическом крекинге углеводородов, пока нет, все же можно предложить такие схемы реакций с участием свободных радикалов, которые согласуются с опытными данными. Например, при крекинге пропана первые стадии процесса могут быть следующими  [c.188]


    Каталитический крекинг проводится обычно в паровой фазе при 450—520° С, давлении 1—2 ат и продолжительности контакта в несколько секунд. В этих условиях каталитические реакции проходят гораздо быстрее реакцией термического крекинга и являются более сложными. Наиболее важными, кроме реакций разложения, являются реакции изомеризации и перераспределения водорода, которые определяют высокое качество крекинг-продуктов, а также процессы уплотнения, ведущие к образованию кокса и его отложению на катализаторе. Скорость перечисленных реакций для отдельных классов углеводородов различна. Наибольшей реакционной способностью обладают олефиновые и нафтеновые углеводороды. Хотя каталитический крекинг относится к очень сложным процессам, все же в большинстве случаев его кинетика может быть описана уравнением 1-го порядка. [c.156]

    Влияние давления на кинетику термического крекинга углеводородов изучено во многих работах. В условиях невысоких давлений — от нескольких миллиметров ртутного столба до 10 аг — скорости реакций разложения, как правило, находятся в прямой зависимости от давления в реакционной системе. Однако при более высоких давлениях (до 200 ат) изменение давления мало влияет на скорость разложения углеводородов. [c.16]

    Г. М. Панченков и В. Я. Баранов [129], изучая кинетику термического крекинга средней фракции (300— 400°С) грозненской парафинистой нефти при давлениях [c.17]

    Опыт показывает, что кинетика термического крекинга, проводимого прн давлениях от 1 до 50 атм при температурах 500—600° С, достаточно точно описывается уравнением (VIII, 29). [c.212]

    Таким образом, термический крекинг на малую глубину, согласно экспериментальным данным, было принято считать гомогенным и квазимономолекулярным процессом. Вывод о гомогенности реакций термического крекинга, по существу, несовместим с представлением о нем как о радикально-цепном процессе, в котором стенки реактора участвуют в обрыве цепей. Несомненно, однако, что при атмосферном и более высоких давлениях роль стенок менее существенна. Однако следует отметить, что рассмотрение термического крекинга с точки зрения радикально-цепной теории требует классифицировать его как гомогенно-гетерогенный химический процесс, поскольку стенки реактора играют роль в кинетике процесса при любых давлениях. На эту роль стенок не обращали внимания до появления работ Н. Н. Семенова [13], в которых был изучен термический распад галоидопроизводных алканов, работ В. В. Воеводского [14] и наших исследований по кинетике глубокого крекинга [15]. Воеводский [14] показал, что с обрывом цепей на стенках сопряжено зарождение цепей на них, т. е. гетерогенность термического крекинга носит двусторонний характер. Состав продуктов и кинетика первичного крекинга алканов обстоятельно изучались и позднее (в 40-х годах) в работах Стеси и сотр. [c.343]

    В последние годы снова появились работы канадских, английских и французских исследователей [19], в которых на основании широкого применения методов газовой хроматографии, масс-спектрометрического анализа и других совершенных методов ис следований изучался состав продуктов и кинетика первичного крекинга при низких давлениях (10—150 мм рт. ст.) в интервале 400—600° С. Эти работы снова подтверждают радикально-ценной механизм первичного термического крекинга кроме того, в них рассчитываются скорости некоторых элементарных реакций, протекающих с участием радикалов и, в частности, подчеркивается важная роль этильных радикалов при определении кинетических характеристик крекинга алканов, на что указывалось еще в работах Фроста в 40-е годы [20]. Французские исследователи дискутируют с Воеводским по поводу выдвинутой им концепции гетерогенного зарождения, возрая ая против заметного влияния стенок на зарождение цепей в термическом крекинге. Ниже мы обсудим результаты проведенных нами исследований, показавших, что рост гетерогенного фактора (б /у) увеличивает обрыв цепей, но мало влияет па их зарождение. [c.344]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]


    В конце тридцатых и начале сороковых годов появляются зкспериментальные работы по крекингу алканов, в которых изучают не только состав продуктов, но также кинетику термического распада индивидуальных алканов с точностью, достаточной для суждения о скорости крекинга и характере управляющих им кинетических закономерностей. В этих работах [14—20], в которых режим эксперимента регистрировали точно по сравению с ранними исследованиями [4], была изучена кинетика термического распада газообразных алканов в довольно широком интервале температуры (450 — 700°С) при атмосферном давлении, в реакторах из различных материалов (кварц, пирекс, медь, железо, монель-металл и др.), пустых или набитых кусочками материала самих реакторов. Большинство кинетических опытов были проведены динамическим методом (в струе), с предварительным подогревом газов или паров в предреакторе, малом времени контакта в реакционной зоне, с последующим химическим анализом продуктов в каждом из опытов, которые отличались, по температуре или по времени контакта. Более подробное изложение выше цитированных работ можно найти в Успехах химии [21] и кандидятской диссертации автора [221. [c.19]

    В основу унифицированных данных по кинетике термического пре-вратцения олефинов до октена мы приняли цифры, найденные Краузе, Немцовым и соавторами. На основании данных табл. 111 (для этилена — по данным Краузе и др.) вычисляем константы скорости крекинга олефинов под давлением в пределах темйератур 300—500° С (табл. 112). [c.133]

    Исходя из соображений кинетики и термодинамики и промышленной практики термической деструкции углеводородов, можно полагать, что наиболее благоприятными условиями для образования углеводородов С4 и С5 являются температуры, лежащие между температурой крекинга на бензин и пиролиза на этилен и пропилен, под давлением с применением водяного пара. Наличие цикланов в исходном сырье может положительно сказаться на выходах диеновых углеводородов (дивинила, изопрена) наряду с олефинами. Сырьем для такого процесса наряду с вышеуказанными продуктами могли бы служить и более высоко-кипящне фракции нефти — керосины парафинистых нефтей, парафин, петролатум и др. Такой процесс, несомненно, имеет существенные преимущества перед каталитическими процессами дегидрирования бутанов и изопентана. Здесь имеются практически неограниченные возможности по сырью, по организации мощных некаталитических установок, по получению фракций более богатых непредельными углеводородами, чем аналогичные фракции, получаемые в процессах дегидрирования. [c.56]

    В литературе описано много примеров изучения продуктов термического распада различных полимеров [1295, 1961, 2111], металлических производных ацетилацетона [2095], азоэтана [345], диборана [263] и гидразиндикарбоно-вых кислот [680, 682]. Конечными продуктами этих последних реакций [680] были только азот, водород и аммиак. Образования промежуточных продуктов не наблюдалось. При исследовании углеводородов при высокой температуре [561] золотые стенки ионизационной камеры нагревались до температуры 1000°. В других опытах стенки покрывались крекирующим алюмокремниевым катализатором для изучения продуктов крекинга как функции температуры. Был проведен масс-спектрометрический анализ продуктов распада пентана ингибированного окислами азота процесс исследовали [428] в широком диапазоне температур, давлений и глубин превращения. Большое разнообразие продуктов, которые могут быть исследованы, а также высокая скорость анализа делают масс-спектрометр незаменимым прибором для детального изучения механизма и кинетики таких реакций. [c.451]

    А. А. Берлин и др. показали [30—36], что надмолекулярная структура жидких мономеров оказывает сильное влияние на кинетику образования и свойства сетчатых (сшитых) полимеров. При термическом разложении углеводородов в жидкой фазе вещества, способные непосредственно карбопизоваться (асфальтены), находятся в растворе продуктов крекинга (или в смеси их с неразложившимся исходным углеводородом). Естэст-венно, что состояние асфальтенов в растворе зависит от свойств растворителя и самих асфальтенов, которые могут в результате сильно влиять на кинетику образования кокса. Коксование является процессом выделения новой фазы. Процессы ее образования всегда кинетически затруднены и требуют некоторого пересыщения по параметру, являющемуся движущей силой этих процессов (давлению паров при конденсации, концентрации растворенного вещества в растворе при кристаллизации). В случае коксообразования выделение новой фазы может или предшествовать собственно образованию кокса, если из раствора выделяется фаза асфальтенов, или идти одновременно с образованием кокса, если из раствора углеводородов выделяется фаза непосредственно кокса. Кинетические закономерности образования кокса в этих двух случаях, если выделение новой фазы является лимитирующий стадией коксообразования, могут быть весьма различны, так как в первом случае выделение новой фазы является чисто физическим, а во втором —химическим процессом. В любом случае наличие индукционного периода коксообразования при разложении углеводородов в жидкой фазе связано с кинетическими особенностями выделения новой фазы. [c.35]


Смотреть страницы где упоминается термин Термический крекинг под давлением кинетика: [c.200]    [c.320]    [c.142]    [c.39]    [c.343]    [c.320]    [c.343]   
Крекинг нефтяного сырья и переработка углеводородных газов Изд.3 (1980) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика крекинга

Крекинг под давлением

Крекинг термический

Термический крекинг под давлением

Термическое кинетика



© 2025 chem21.info Реклама на сайте