Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цикланы

Рис. 172. Схема получения адипиновой кислоты каталитическим окислением цикло- Рис. 172. Схема <a href="/info/197398">получения адипиновой кислоты</a> <a href="/info/49396">каталитическим окислением</a> цикло-

    Теория напряжения Байера в свое время удовлетворительно объясняла нестойкость циклов малого размера (трех- и четырехчленных). Однако впоследствии было установлено, что тетраэдрические атомы углерода в циклических системах не находятся в одной плоскости, поэтому возможно построение шестичленных циклов и любых циклов большего размера, свободных от углового напряжения. [c.90]

    Процесс Вульфа для получения ацетилена состоит в пиролизе природного газа или пропана нри температуре 1200—1400° и низком парциальном давлении в печах, работающих по регенеративному циклу с периодами пиролиза и нагрева. Процесс Вульфа наиболее применим там, где имеется много дешевого углеводородного сырья, а смесь окиси углерода и водорода, получающаяся нри пиролизе по методу Захсе, не нашла бы применения. [c.96]

    Лимонная кислота — еще один важный промежуточный продукт в обмене веществ организма человека. Боль-ще того, самая важная система реакций, обеспечивающих организм энергией, носит название цикла трикарбоновых кислот, потому что в ней принимает участие лимонная кислота. Иногда этот цикл даже называют циклом лимонной кислоты. [c.171]

    Жидкая или газовая смесь пропускается через слой адсорбента, обычно сверху вниз. Цикл адсорбции заканчивается после почти полного использования поглотительной способности адсорбента, на что указывает проскок адсорбируемого вещества. Затем через адсорбент пропускают вытесняющий агент (растворитель, водяной пар и т. д.), который вытесняет адсорбированное вещество с поверхности адсорбента. Иногда этого бывает недостаточно. Например, при адсорбционной очистке масел, парафина часть смолистых ве(цеств остается па поверхности адсорбента после вытеснения. Тогда адсорбент требует дополнительной регенерации путем выжига смолистых отложений, для чего его необходимо выгружать и регенерировать в отдельном аппарате. [c.258]

    С позиции охрани водных ресурсов ТПК можно разд 11нть на две категории ТПК с водооборотным циклом (полним или чаотичним)г  [c.95]

    Если три атома углерода соединены друг с другом в цикл, то они образуют равносторонний треугольник, в котором угол между каждой парой связей равен 60°, т. е. значительно отличается от естественного угла 109°28. По этой причине циклы из трех атомов углерода образуются с трудом, а если и образуются, то легко разрушаются. [c.90]

    Тем временем Джоуль и Томсон (см. разд. Теплота ) при изучении теплоты обнаружили, что газы могут охлаждаться, если им дать возможность расшириться. Таким образом, если дать газам расшириться, а затем снова сжать в таких условиях, при которых потери теплоты не будут восполняться, а затем снова дать газам расшириться и повторить этот цикл несколько раз, то можно до- [c.121]

    Образование тиофена из бутана и серы протекает в несколько стадий. Считают, что вначале сера дегидрирует бутан в дивинил, который затем реагирует с серой, замыкая цикл и давая тиофен [38]. При побочных реакциях получаются сероуглерод и продукты с большим содержанием серы. [c.506]


    Работа Ван-дер-Ваальса ясно показала, что для водорода эффект Джоуля — Томсона наблюдается только после того, как температура его снизится ниже некоторого определенного значения. И чтобы снизить температуру водорода до требуемого значения, перед проведением цикла расширения газ следует охладить. [c.122]

    Обычный углеводород с тремя атомами углерода, как вы помните, называется пропаном. Если же эти атомы углерода в его молекуле образуют кольцо, получается циклопропан. (Приставка цикло и означает, что атомы углерода соединены в кольцо, или цикл.) Соединения, содержащие кольца, называются циклическими, а соеди-нения, не содержащие колец,— ациклическими. (Приставка а взята из греческого языка й означает отрицание.) [c.53]

    Для получения циклогексанона образовавшийся при окислении цикло-гексанол возвращается в процесс. Циклогексанон является исходным материалом для производства капролактама, превращаемого полимеризацией в перлон. Таким образом, как найлон, так и перлон (найлон 6) получают из циклогексана. [c.271]

    Второй метод основывается на циркуляции через стационарный слой катализатора синтез-газа и масла. Теплота реакции в этом способе отводится в основном маслом, которое имеет значительно более высокую теплоемкость, чем газ, охлаждается вне реактора и возвращается в цикл. Следовательно, здесь имеется прямой теплообмен. Используемое масло является фракцией продуктов синтеза. Часть теплоты реакции может отводиться за счет испарения масла, что зависит от температурных Пределов ки,пения выбранного масла [57]. Обычно масло подбирается с таким расчетом, чтобы за счет испарения отводилась примерно половина тепла реакции. [c.116]

    Эти атомы хлора инициируют такой же цикл реакций таким образом, в данном случае протекает цепная реакция [c.140]

    Шлам хлористого алюминия можно применять повторно в следую-ш,ем цикле конденсации, но для получения совершенно не содержащего хлора продукта целесообразно добавлять некоторое количество свежего безводного хлористого алюминия. [c.236]

    В 1са,гап пределах изменяется показатель политропы в процессах идеальных циклов тепловых м ш1ин  [c.42]

    Комплексное соединение хлористого алюминия обладает еще большей активностью, чем алюминий, и его можно применять для последующих циклов процесса. При этом в большинстве случаев реакция начинается уже при комнатной температуре и возникает необходимость охлаждать реакционную смесь. Таким образом, исходя из небольшого количества активированного алюминия, возможно получать большие количества синтетических смазочных масел. [c.241]

    Тот факт, что даже при применении совершенно сухих исходных веществ всегда образуется свободная серная кислота, указывает, что при сульфоокислении образуется в результате побочной реакции вода. Граф считает причиной образования воды дегидрирование циклогексана в циклогексен цикло гексил суль фон о-в ой перкислотой, оторое протекает по уравнению. [c.484]

    Для уменьшения расхода воды на нужды производства и уменьшение объема промышленных отоков. требующих специальной очистки, широко применяют повторное иопользование воды, так называемые "оборотные воды", циркулирующие в замкнутом цикле или используемые в других стадиях производства. Так, сточные воды произ- [c.30]

    В дальпей пем для сменно-циклических процессов ста.пи применять реакторы регенеративного типа, в которых сам катализатор аккумулирует тепло от в]>1жига кокса и отдает его реакционной смеси во время цикла реакции, т. е. используется в качестве тепло-носнтеля. Реакторы такого типа находят применение для более длинных циклов, нанример в процессе дегидрирования бутиленов. [c.282]

    Получение циклогексана из определенных нефтяных фракций базируется на изомеризации содержащегося в этих фракциях вместе с цикло-гексаном метилциклонептаиа в циклогексан. Процесс проводится в условиях, при которых дегидрирование не имеет места, а именно с хлористым алюминием в присутствии хлористого водорода как промотора. Количество метилциклопентапа и циклогексана во фракциях некоторых американских нефтей показано в табл. 53, в которой дан состав углеводородных нефтяных фракций, выкипающих в пределах 36 —118 [Ц. [c.99]

    Интересный новый вид полимеризации, соединенной с циклизацией, представляет впервые осуществленная Реппе реакция получения цикло-октатетраена. Циклооктатетраен получают, пропуская смесь ацетилена с азотом под давлением 15—20 ат (давление азота около 6 ат) через суспензию цианистого никеля в тетрагидрофуране при 60—70". [c.254]

    Современные способы получения бензола, толуола и ксилолов из нефти основаны на том, что подходящая но составу нрямогонная бензиновая фракция, богатая нафтеновыми углеводородами и уже содержащая некоторое количество ароматических, нодвергается каталитическому дегидрированию, нри котором циклогексаны дегидрируются в ароматические углеводороды, а алкнлциклонентаны изомеризуются в цикло-гоксаиы, которые тотчас же дегидрируются в производные бензола. Как моясно видеть из табл. 8, бензин из нефти нафтенового основания содержит до 55% нафтеновых углеводородов, которые в процессе риформинга превращаются в ароматические. [c.102]

    При получении бензола и толуола для десорбции применяют ксилол. Перед собственно десорбцией силикагель промывают, чтобы освободить его от пеароматнческих составных частей. Это может быть сделано тем н е десорбентом, который затем направляют в колонну 1 (рис. 53), где неароматические отделяются от десорбента. За этой фракцией идет промежуточная фракция, которая в основном еще содержит неароматические углеводороды, по одновремеппо и часть десорбированных ароматических. Эту фракцию возвращают па повторную адсорбцию. И, наконец, следующая за этой фракция содержит уже только десорбированные ароматические углеводороды. В колонне 2 ее фракционировкой освобождают от десорбента, а в колонне 3 разделяют бензол и толуол. Десорбепт возвращают в цикл. [c.109]


    Hj— Hj+ROH HOGH2— H,OR (моноэфир гликоля) R-алкил, арил, цикло- [c.186]

    Окисление этилбензола в ацетофенон протекает при 125° и 2 ат. Превращение этилбензола за один цикл составляет 25—30%. Реакция экзотермическая. Сырые продукты реакции, состоящие примерно из 73% этилбензола,. 17% ацетофеноиа, 8% метилфенплкарбинола и 2% побочных продуктов, разделяют разгонкой. Полученную таким образом смесь, состоящую из 68% ацетофенона и 32% метилфенолкарбииола, гидрируют при 14 ат водорода и 130—170° над медно-хромо-железным катализатором. При гидрировании получается практически чистый метилфенилкарбинол. Дегидратация его в стирол производится над нанесенной на боксит окисью титана, в отсутствие давления при 250°. [c.236]

    На установке должны быть минимально четыре адсорбера — 1, 2, 3 и 4, включаемые поочередно в отдельные циклы процесса. Охлажденный газ с холодильников прямого действия поступает в адсорбер 1, проходит через него снизу вверх и газодувкой 5 подается через нагреватель 6 в адсорбер 2, только что подвергавшийся отпарке. Пропусканием подогретого до 100—150° газа адсорбер 2 просушивают, а выходящий из него теплый и влажный газ проходит через холодильник 7. Обезвоженный и охлажденный газ далее направляют в еще нагретый адсорбер 3, охлаждая последний. Избыток газа, который не засасывается газодувкой 5, после адсорбера 3 поступает в линию остаточного газа и затем либо на последующую ступень синтеза, либо (после последней ступени) на сжигаиие. По окончании насыщения адсорбер 1 автомати- [c.98]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    TaKHM образом, принимают, что сначала под влиянием энергии света расщепляются молекулы хлора на атомы. Атомы хлора отрывают от молекулы углеводорода атом водорода и образуют алкильный радикал и молекулу хлористого водорода. Алкильный радикал тут же реагирует с молекулой двуокиси серы, превращаясь в радикал алкил-сульфона, который в свою очередь сейчас же реагирует с молекулой хлора, превращаясь в сульфохлорид, при этом снова образуется свободный атом хлора. В результате образования этого атома хлора начи- ается следующий цикл реакций, теоретически без затраты энергии света. Квантовый выход, который в лабораторных условиях составляет приблизительно 30000—40000, в производственных условиях из-за невозможности применения чистых исходных материалов достигает всего лишь приблизительно 2000—3000. Как и при хлорировании, здесь также может вступить в реакцию один алкильный радикал с молекулой хлора, образуя молекулы алкилхлорида и атом хлора R + la- R l + r (реакция хлорирования в углеродной цепи). Но это, как мы уже знаем, бывает только в редких случаях. Алкильные радикалы реагируют с SO2 (по Шумахеру и Штауффу) на две порядковые величины быстрее, чем с одной молекулой хлора [11]. [c.366]

    Изомеризацию одного гексана на практике не проводят, а всегда перерабатывают смеси пентана и гексана. Наиболее важным методом является так называемый процесс Изомэйт [35], при помощи которого н-пентан и гексаны с низким октановым числом переводят в изопентан и в более высокооктановые гексаны. Процесс разработан так, что в одной колонне выделяют изопентан, а в другой смесь неогексана и диизопропила. н-Пентан, метилпентаны с меньшей степенью разветвления и н-гексан возвращают в цикл. Ниже процесс Изомэйт будет описан подробнее. [c.525]

    Рнс. 105. Диаграмма плавкости смесей К-циклогексилбутан-1-сульфамида и N-цикло- [c.576]


Смотреть страницы где упоминается термин Цикланы: [c.96]    [c.106]    [c.19]    [c.4]    [c.17]    [c.45]    [c.45]    [c.168]    [c.169]    [c.282]    [c.171]    [c.172]    [c.21]    [c.66]    [c.271]    [c.271]    [c.280]    [c.525]    [c.576]    [c.596]   
Смотреть главы в:

Адсорбция газов и паров на однородных поверхностях -> Цикланы

Адсорбция газов и паров на однородных поверхностях -> Цикланы

Физико-химические свойства индивидуальных углеводородов Выпуск 1 -> Цикланы

Физико-химические свойства индивидуальных углеводородов -> Цикланы

Искусственное жидкое топливо Часть 1 -> Цикланы


Пособие по химии для поступающих в вузы 1972 (1972) -- [ c.0 ]

Начала органической химии Книга первая (1969) -- [ c.0 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.679 ]

Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.0 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция цикланов

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы взаимные превращения

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы доказательства циклического строения

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы напряжение в цикле

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы природные источники

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы размыкание цикла

Алициклические углеводороды Циклоалканы, Циклопарафины, Цикланы свойства

Алканы и цикланы. Роль пространственных эффектов

Алюмохромовый катализатор ароматизация цикланов

Водой цикланов также цикленов смесью воды

Гидроизомеризация алканов и цикланов

Гидроизомеризация цикланов, ароматических соединений

Дегидрирование цикланов и их производных

Дегидрогенизация цикланов (или нафтенов)

Дегидроциклизация цикланов, алкилзамещенных алициклов

Жидкофазное дегидрирование шестичленных цикланов

Иванов, В. К. Савинова и В. П. Шаховская. Перекиси, образующиеся при автоокислении некоторых алканов и цикланов

Катализаторы скелетной изомеризации низших алканов и цикланов

Каталитическая дегидрогенизация цикланов

Количественные определения структурных фрагментов алканов и цикланов

Крекинг каталитический цикланов

Крекинг термический цикланов

Липович, О. И. Блюм, Э. П. Воскобойникова и И. В. Калечиц Исследование механизма превращений цикланов в процессе платформинга с помощью меченых атомов

Окисление неполное боковых цепей цикланов в гидропере

Окисление неполное боковых цепей цикланов в спирты, кар

Окисление цикланов и их производных окисление

Окислительное цикланов и их производных в соответствующие ароматические соединения

Перемещение в цикланах, бицикланах, цикленах

Перемещение кратных связей цикланов

Применение ИК-спектроскопии в исследовании нефтяных алканов и цикланов

Проверка возможности переноса атом-атомных потенциалов P(sp3)... С(ГТС) и фн. .. С(ГТС) на другие алканы и цикланы

Производные других цикланов

Процессы избирательного катализа Каталитическая дегидрогенизация шестичленных цикланов

Равновесия изомеризации цикланов

Разделение углеводородных смесей с применением реакций комплексообразовання с мочевиной и тиомочевиной. . Разделение природных и искусственных смесей цикланов и алканов при помощи тиомочевинных аддуктов

Разделение цикланов

Разложение в цикланах

Расчет константы Генри для адсорбции цеолитом алканов и цикланов

Реакции парафинов, олефинов, диолефинов, ацетиленовых соединений, цикланов, цикленов и их производных

Сажа цикланов

Сводка катализаторов скелетной изомеризации низших алканов и цикланов

Структурное соответствие при дегидрировании цикланов

Сужение в цикланах

Теплота весовая цикланов

Углеводороды цикланы нафтены

Углеводороды циклические цикланы

Цикланы (нафтеновые углеводороды)

Цикланы С5—Сю. Индексы Ковача на апиезоне

Цикланы С7—С4- Индексы Ковача на сквалане

Цикланы влияние структуры на критические степени сжатия

Цикланы галоидные, влияние напряжения на реакционную способность

Цикланы нафтены

Цикланы также углеводороды алициклические

Циклические углеводороды (цикланы). Нефть, терпены, скипидар

Циклопарафины (цикланы)

цикланов и их производных



© 2025 chem21.info Реклама на сайте