Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь и никель, хроматографическое разделение

    Маркина H. A., Хроматографическое разделение микроколичеств меди, никеля и кобальта в присутствии железа в воздухе , Гигиена и санитария, Л" 11, 65 (1977). [c.205]

    При определении в бронзах алюминия, железа, никеля и цинка медь обычно удаляют электролизом или тиосульфатом. В бронзах, содержащих одновременно бериллий, алюминий и желе-3 о, требуется много предварительных операций для их разделения. В сплавах медь — железо, содержащих до 50% железа, медь количественно выделить невозможно. В указанных случаях анализ может быть выполнен при помощи хроматографического ионообменного разделения. [c.147]


    Хроматографический метод разделения компонентов прост в выполнении и требует много меньше времени по сравнению с известными классическими методами, о которых было сказано выше. Целью настоя-пд,ей работы являлось исследование возможности применения ионного обмена при разделении малых количеств висмута, свинца, кобальта, никеля, фосфора, железа и меди в высоколегированных сталях, чистых металлах и их сплавах. [c.230]

    Много места отведено хроматографическому определению малых количеств фосфора, железа, кобальта, никеля, меди, цинка, свинца, висмута и больших количеств цинка и молибдена, что для практики является важным. В ряде случаев время, необходимое для выполнения анализа хроматографическим методом, сокращается. Ионообменная хроматография позволяет из одной навески определять железо, кобальт, медь, цинк, не прибегая к сложным методам их разделения. [c.9]

    Наиболее эффективное разделение указанных элементов дает хроматографический метод [8], так как в 9н. соляной кислоте многие элементы, и медь в том числе, образуют комплексные анионы, а никель остается в форме простых катионов. В результате пропускания такого раствора через анионит, заряженный в С1"-форме, ионы меди обмениваются с С1" и поглощаются на анионите, а никель проходит в элюат. [c.149]

    Метод Д.П. Малюги основан на использовании рубеановодородной кислоты, позволяющей вести определение меди(П), кобальта(П), никеля(П) и цинка. Осадок рубеанатов этих микроэлементов разрушают концентрированной серной кислотой, которую затем удаляют выпариванием. Остаток растворяют в хлороводородной кислоте и определяют медь фотометрически с диэтилдитиокарбаминатом натрия, кобальт (поспе концентрирования путем вьтаривания) — также фотометрически в виде комплекса с нитрозо-К-солью, никель — фотометрически в виде розового диметилглиоксимата. Однако на взаимодействие кобальта с нитрозо-Н-солью влияют другие микроэлементы, если соотношение кобальт — медь превышает 1 50 кобальт — никель 1 100 или кобальт — железо 1 1500. Определение кобальта этим методом связано с потерями и дает ошибку около 7% в случае бедных кобальтом почв ошибка может быть больше. Хроматографическое разделение меди, кобальта, никеля и цинка могло бы служить усовершенствованию этого метода. [c.356]

    Ускоренное полярографическое определение меди, никеля и кобальта в рудах, не содержащих цинка. Бюлл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений М-ва геологии [СССР]), 1952, №2 (106), с. 22—35. Библ. 5 назв. Стеклогр. 5622 Спеддинг, Фойт, Глэдроу, Слэйт. Церий и иттрий. [Хроматографическое разделение]. В сб. Хроматографический метод разделения ионов. М., Изд-во иностр. лит-ры, [c.216]


    Гексафторацетилацетонаты марганца (И), железа (И), кобальта (И), никеля (И) и меди (И) быстро возгоняются при давлении 0,05 мм в интервале температур 50—70°. Комплексы тория (IV) и неодима (III) медленно возгоняются ири 100° и давлении 0,05 мм. Уже на основании этого можно сделать вывод, что хроматографическое разделение комплексов будет скорее всего успешным, но ири этом могут встретиться дополнительные осложнения. Все перечисленные комплексы, исключая комплекс тория, встречаются в виде гидратов [42]. Влияние координационных групп воды на поведение вещества в хроматографической колонке еще не изучено. Возможно, что вредных явлений наблюдаться не будет, однако полимеризация через оляцию (о1а11оп) и диссоциация координационной воды в процессе проявления вполне реальны. [c.44]

    В табл. 2 можно легко найти оптимальные значения pH для хроматографического разделения смесей тех или иных катионов. Так, например, коэффициент избирательности полимера на основе /г-оксифенилиминодиуксусной кислоты к железу (АГ = 0,58—0,60) наиболее резко отличается от коэффициентов избирательности к цинку, меди и никелю (К =0,03—0,13) при значениях pH 1,2—2,7. [c.60]

    Б193825. Изучение влияния алюминия на хроматографическое разделение никеля, кобальта, меди, находящихся в атмосферном воздухе вокруг предприятий цветной металлургии. - МНИИГ. 1972 г., 40 стр. [c.44]

    Глицин был применен Головатовым и Ощаповским [2] при. хроматографическом отделении ионов железа и титана от ионов меди, никеля, кобальта, кадмия и цинка. Глициновые растворы были применены Зверевой [3] при катионообменном разделении ионов марганца, кальция и магния и было показано, что эти ионы в широком интервале значений pH раствора в присутствии глицина показывают постоянное значение коэффициентов распределения металла между катионитом и раствором, связанное с образованием однозарядных комплексных катионов. В данной работе мы обнаружили, что в присутствии глицина и гидроксиламина также наблюдается постоянное значение коэффициентов [c.114]

    Провести хроматографическое разделение катионов а меди и никеля в смеси 0,1 н. раствора Си(ЫОз)г с 0,1 н. раствором N (N03)2 (проявитель — диметил-диоксим) б) железа (П1) и кобальта (П) из раствора, содержащего 0,1 и. раствор Fe U, 0,1 н. раствор o(N03)2 (проявитель — ферроцианид калия). [c.364]

    В последнее время такие реактивы, как дитизон, 8-оксихинолин, ацетилацетон, теноилтрифторацетон и другие, с успехом применяемые для колориметрического (спектрофотометрического) и титриметрического определений в аналитической химии и в экстракционном разделении в аналитической химии и радиохимии, получают первое многообещающее применение в работах по хроматографическому разделению. Опубликованы исследования по разделению хроматографическим методом ацетил-ацетонатов иттрия, гадолиния и индия, диэтилдитиокарбаминатов железа, кобальта, никеля и меди, 8-оксихинолина-тов индия, железа, кобальта, никеля, меди, цинка, молибдена, марганца, ванадия и других элементов, а также в виде других циклических комплексных соединений. Расширяется круг растворителей. Кроме диоксана и простейших спиртов — метанола и этанола получают применение более сложные спирты, ацетон, ацетамнд, хлороформ, четыреххлористый углерод, эфиры и др. [c.197]

    Принципиальные возможности использования цеолитов в качестве селективных ионообменников очевидны пз приведенных выше данных по ионообменным равновесиям и кинетике. Однако широко эти возможности пока не реализуются. Синтетические цеолиты из-за невысокой химической устойчивости могут найти ограниченное применение [7], в то время как высококремнистые дешевые природные цеолиты имеют широкие перспективы [74, 7.5]. Имеющиеся литературные данные свидетельствуют о том, что синтетические цеолиты с успехом могут быть использованы для разде.тения изотопов лития, а также смесей щелочных металлов, например рубидия и калия, рубидия и цезия, очистки цезия от рубидия, калия и натрия на цеолите X, а также рубидия от калия, натрия, цезия на цеолите А. Цеолит X позволяет осуществлять разделение стронция и кальция [29] в условиях, когда концентрация кальция в 400—500 раз превышает содержание стронция. Высокие селективность и емкость цеолита Л позволили осуществить в лабораторных л словиях выделение лтеди(П) пз продуктов гидрометаллургического производства на фоне 0,7. У раствора сульфата натрия при pH 4—4,5 [7Г)], а также хроматографическое разделение меди и никеля [25]. Показано, что прп-лгенение синтетических цеолитов вместо ионитов в противо-точных ионообменных установках зпачите.яьпо повышает эффективность процессов разделения [7]. [c.58]

    Ф. М. Шемякин, Э. С. Мицеловский в 1947 г. применили метод физико-химического анализа для исследования кинетики процесса образования полос осадка и построения диаграммы состав — свойство при хроматографических разделениях на пермутитах, окиси алюминия, 8-оксихинолине и для нахождения оптимального состава хроматографических пермутитов (Ф. М. Шемякин, Д. В. Романов). В. Б. Алесковский применил в качестве носителей ионообменные смолы, обрабатывая их 0,2— 0,3-н. раствором осадителя до полного насыщения. Осадочные хроматограммы на бумаге получил Ф. Н. Кулаев. В ряде работ Ф. М. Шемякина, Л. Л. Туманова, В. С. Андреева, Э. С. Мицеловского в осадочной хроматографии для алюминия, железа, кобальта, никеля, меди были применены органические реагенты 8-оксихинолин, бэта-нафтохинолин, купферон, аспирин, пирамидон, уротропин или в виде колонок или на колонках окиси алюминия. Наоборот, солями бария и меди были разделены смеси формиата, карбоната, оксалата, цитрата, бензоата. [c.18]


    Перспективным направлением для качественного анализа является комбинированное использование осадочной хроматографии в сочетании с распределительной. Идея такого рода комбинации в хроматографическом методе разделения смесей заключается в следующем. Вначале получают первичную осадочную хроматограмму ионов на бумаге, пропитанной органическим осадителем, а затем промывают ее не водой, а органическим растворителем, способным частично растворять осадки и переносить их с различной скоростью. Например, можно получить осадочную хроматограмму путем нанесения раствора, содержащего смесь катионов меди, кобальта и никеля (двухвалентных) на бумагу, предварительно обработанную рубеановодород-ной кислотой и парами аммиака, а потом разогнать образовавшиеся зоны осадков водно-бутаноловым и водно-про-паноловым растворителями [161]. [c.209]

    Для улучшения разделяемости некоторых элементов можно применять добавки подходящих органических растворителей. Например, установлено, что при разделении меди и цинка соляная кислота в смесях ацетона с водой дает лучшие результаты, чем в чисто водных растворах [13, 52]. Кембер с сотрудниками [60] систематически исследовали влияние различных органических растворителей на хроматографическое элюирование меди и никеля в разбавленных солянокислых растворах. [c.366]

    Авторам [13, 14] удалось добиться хорошего разделения комплексов меди и никеля, магния и титанила, меди и цинка, никеля и марганца(П), серебра(П), платины и палладия, цинка и ванадила, Нчелеза и платины. Калибровочные кривые, построенные для комплексов цинка(П) и серебра(П), линейны в интервале 2—8 мкг. Предел обнаружения не определялся. Те же авторы исследовали хроматографическое поведение ацетилацетонатов ряда металлов [c.47]

    Гельферих ввел понятие лигандный обмен , продемонстрировав способность координированных ионом никеля лигандов одного типа обратимо замещаться лигандами другого типа и предложил использовать процессы комплексообразования в хроматографии. Под лигандообменной хроматографией в настоящее время понимают такие хроматографические процессы, в которых взаимодействие разделяемых соединений со стационарной фазой осуществляется путем образования лабильных координационных связей в координационной сфере комплексообразующего иона металла [148], причем катионы металла должны прочно удерживаться стационарной фазой за счет ионных связей, как это имеет место в случае сульфокатионитов и карбоксилсодержащих смол, или, еще лучше, за счет хелатирования стационарными лигандами , например, иминодиацетатными группами. Координационные связи имеют вполне определенную пространственную направленность и фиксируют донорные атомы подвижных лигандов на строго определенных расстояниях. Благодаря столь жестким требованиям , предъявляемым к геометрии сорбируемых соединений, лигандообменная хроматография оказалась исключительно эффективным методом разделения соединений, близких по своим физико-химическим свойствам, в частности геометрических изомеров, гомологов и даже оптических изомеров. Так, рацемические а-аминокислоты были успешно разделены на оптически активные компоненты хроматографией на сорбенте с привитыми группировками -пролина в присутствии ионов меди. Структура сорбционного комплекса , образуемого стационарным лигандом, ионом металла и [c.248]


Смотреть страницы где упоминается термин Медь и никель, хроматографическое разделение: [c.74]    [c.434]    [c.29]    [c.334]   
Основы аналитической химии Книга 2 (1961) -- [ c.509 ]




ПОИСК





Смотрите так же термины и статьи:

Медь хроматографическое

Никеля и меди разделение



© 2025 chem21.info Реклама на сайте