Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические схемы азотной кислоты под давлением

Рис. 29. Технологическая схема производства никотиновой кислоты из 2-метил-5-этилпиридина окислением азотной кислотой под давлением. Рис. 29. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/9720">никотиновой кислоты</a> из 2-метил-5-этилпиридина <a href="/info/49393">окислением азотной кислотой</a> под давлением.

    Технологическая схема производства азотной кислоты под повышенным давлением (0,73 МПа) приведена на рис. 37. [c.105]

Рис. 30. Технологическая схема производства никотиновой кислоты из хинолина окислением азотной кислотой при атмосферном давлении. Рис. 30. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/9720">никотиновой кислоты</a> из хинолина <a href="/info/49393">окислением азотной кислотой</a> при атмосферном давлении.
Рис. 3.1. Принципиальная технологическая схема производства азотной кислоты под давлением Рис. 3.1. Принципиальная <a href="/info/813919">технологическая схема производства азотной</a> кислоты под давлением
    Технологическая схема производства разбавленной азотной кислоты под высоким давлением [c.225]

    Принципиальная технологическая схема агрегата УКЛ-7 (7,3-10 Па) приведена на рис. УП1-4. Атмосферный воздух очищается на суконном фильтре воздухозаборника 15, затем очищенный воздух сжимается в первой ступени турбокомпрессора 14 до давления 3,5-10 Па. Воздух при этом нагревается до 175 °С. Затем он охлаждается водой в промежуточном холодильнике 12 до 40—45 °С и сжимается во второй ступени турбокомпрессора 14 до давления 7,3-10 Па. Далее сжатый воздух идет на окисление аммиака, в качестве добавки в процессе кислой абсорбции, а также на отдувку оксидов азота от азотной кислоты и на сжигание природного газа в топках 16. [c.212]

    Ниже рассматриваются технологические схемы производства разбавленной азотной кислоты под высоким давлением и комбинированная. [c.225]

    РИС. УШ-4. Технологическая схема производства слабой азотной кислоты под давлением 7,3-10 Па  [c.213]

    ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА НИКОТИНОВОЙ КИСЛОТЫ ИЗ 2-МЕТИЛ-5-ЭТИЛПИРИДИНА ОКИСЛЕНИЕМ АЗОТНОЙ КИСЛОТОЙ ПОД ДАВЛЕНИЕМ [c.202]

    Для производства разбавленной азотной кислоты из аммиака применяются следующие системы 1) работающие под атмосферным давлением, 2) работающие под повышенным давлением и 3) комбинированные, в которых окисление аммиака осуществляется под атмосферным давлением, а окисление N0 и абсорбцию N02 водой проводят под повышенным давлением. Технологическая схема производства разбавленной азотной кислоты под атмосферным давлением приведена на рис. 129. [c.350]


    Примером процесса с открытой цепью по газовой фазе может служить технологическая схема отделения кислотной абсорбции нитрозных газов в производстве разбавленной азотной кислоты под атмосферным давлением, которая приведена на рис. 48. Степень абсорбции оксидов азота в каждой башне относительно невелика, но в шести последовательно соединенных башнях суммарная степень извлечения оксидов азота из газов достигает примерно 92%. Оставшиеся нитрозные газы поглощаются щелочью в последующих башнях (на рисунке не показано). Подобные схемы используются в производстве серной и соляной кислот, некоторых минеральных солей и многих органических продуктов. [c.121]

    Однако увеличение потерь катализатора и расхода энергии с повышением давления является серьезным тормозом в развитии этого способа. В связи с этим в последнее время получают распространение схемы, в которых контактное окисление аммиака проводят при более низком давлении (до 4-10 Па), чем окисление оксида азота (до 12-10 Па). Для современных схем характерны большая мощность одной технологической нитки (380— 400 тыс. т/год) и возможно более полное использование энергии отходящих газов и низкопотенциальной теплоты в технологических целях для создания автономных энерготехнологических схем. Комбинированная схема производства разбавленной азотной кислоты под давлением 0,4—1 МПа приведена на рис. 38. Сжатый центробежным компрессором и нагретый воздух (4,2-10 Па, 200°С) поступает в рубашку совмещенного с паровым котлом контактного аппарата. Далее воздух поступает в смеситель, где смешивается с очищенным и разогретым аммиаком. Пройдя тонкую очистку в фильтре, встроенном в контактный аппарат, воздушно-аммиачная смесь поступает на двухступенчатый контакт, состоящий из трех платиновых сеток и слоя неплатинового ката- [c.107]

    Технологическая схема производства разбавленной азотной кислоты под повышенным давлением (8—10 ат) изображена на рис. 84. [c.266]

    Государственный институт азотной промышленности разработал комбинированную схему получения неконцентрированной азотной кислоты в абсорбционном отделении под давлением 3,5-105 Па с новым контактным оборудованием и применением агрегатного принципа всего технологического процесса. Новый проект позволил сэкономить оборудование контактного отделения, поместить отделение абсорбции и склад продукции в одном корпусе, исключить щелочное поглощение хвостовых нитрозных газов. Обезвреживание выхлопных газов достигается за счет низкотемпературной очистки с применением аммиака на ванадиевом катализаторе. Содержание оксидов азота после очистки в выхлопных газах не более 0,012 об.%. [c.36]

    Первая стадия процесса (конверсия аммиака) одинакова как для получения разбавленной, так и для получения концентрированной кислоты, вторая стадия (переработка нитрозных газов) отличается рядом особенностей. Решающее значение при выборе параметров той или иной технологической схемы имеет выбор оптимального давления на каждой из стадий процесса. В производстве азотной кислоты повышение давления существенно интенсифицирует химические реакции на всех стадиях процесса, способствует эффективности теплообмена, позволяет использовать более совершенные массообменные устройства, уменьшает размеры аппаратуры и коммуникаций и, в конечном итоге, позволяет снизить капитальные расходы. [c.213]

    На рис. VI- показана современная технологическая схема производства разбавленной азотной кислоты при атмосферном давлении. [c.196]

Рис. 15. Технологическая схема производства неконцентрированной азотной кислоты под давлением 3,5-10 Па Рис. 15. <a href="/info/24932">Технологическая схема</a> <a href="/info/1688633">производства неконцентрированной азотной кислоты</a> под давлением 3,5-10 Па
    На рис. 15.14 представлена отечественная технологическая схема производства разбавленной азотной кислоты под высоким давлением производительностью 350 т/сутки по моногидрату, внедренная в 1968 году. [c.225]

    В другом случае при применении фильтра в режиме высокого давления (1500 кПа) капли масляного аэрозоля удаляли из воздуха за третьей ступенью поршневого компрессора перед подачей газа в воздухоподогреватель. Воздух, выходящий из компрессора при 120 °С, представляет собой взрывоопасную среду, если в нем содержатся капли масла при 315 °С [519]. Предложенная система продемонстрировала также удовлетворительную работу в сочетании с установками сульфирования и хлорирования, а также в технологических схемах с участием паров азотной кислоты и газов [c.376]


    Технологическая схема производства неконцентрированной азотной кислоты под давлением 7,3-10 Па показана на рис. 15. Атмосферный воздух, забранный на территории завода, проходит тщательную очистку от возможных примесей, находящихся в воздухе, в двухступенчатом фильтре 1. Первая ступень фильтра выполнена из лавсановой ткани, вторая — из ткани Петрянова. Фильтр из двух ступеней, совмещенных в одном корпусе, располагается перед вса-сом компрессора. Очищенный атмосферный воздух поступает на всас компрессора газотурбинного агрегата. [c.55]

Рис. VI-28. Контроль и автоматизация основных узлов технологической схемы производства разбавленной азотной кислоты под давлением 7,3 ат Рис. VI-28. Контроль и <a href="/info/1815249">автоматизация основных</a> узлов <a href="/info/66466">технологической схемы производства</a> <a href="/info/110304">разбавленной азотной кислоты</a> под давлением 7,3 ат
    При переработке газов для получения разбавленной азотной кислоты под повышенным давлением (0,8—1,0 МПа) технологическая схема состоит из тех же блоков, что и в первом случае. Некоторые отличия связаны с особенностями работы оборудования под давлением. [c.22]

    В настоящее время имеется несколько опытных технологических схем получения оксида азота плазменным методом с большим расходом электроэнергии. На практике широко используются многотоннажные производства азотной кислоты из синтетического аммиака, несмотря на их сложность, большие капитальные затраты,, использование катализаторов из дефицитных материалов (платины, палладия и родия). Однако расход энергии при этом методе производства азотной кислоты низкий. В современных системах, работающих под давлением 7,3-10 Па при использовании тепла реакции, электроэнергия из заводской сети не употребляется. [c.7]

    Технологическая схема производства азотной кислоты под атмосферным давлением [c.39]

    В первой половине 60-х годов ГИАП и его Днепродзержинский филиал в содружестве с Харьковским политехническим институтом, Днепродзержинским химическим комбинатом и Невским машиностроительным заводом разработали энерготехнологическую схему производства азотной кислоты под единым давлением 740 кПа [13, 14]. Мощность такого агрегата в 3 раза превышает мощность агрегата комбинированной системы с давлением при абсорбции 355 кПа. Особенностями этой схемы являются газотурбинный привод, компенсирующий затраты энергии на технологические нужды производства, высокотемпературная очистка отходящих газов на катализаторе, содержащем 2% палладия на окиси алюминия, до концентрации в них окислов азота 0,005 об.%. Установка не потребляет энергии со стороны. В 1976 г. па таких агрегатах производилось 43% всей выпускаемой слабой азотной кислоты [13]. По мере накопления опыта в систему вносились некоторые изменения, улучшившие показатели ее работы. [c.44]

    Для улучшения технико-экономических показателей производства разбавленной азотной кислоты намечены следующие пути усовершенствования технологического процесса создание мощных агрегатов, проведение процесса абсорбции окислов азота под давлением до 15—20 аг, обеспечение нулевого баланса энергии, снижение потерь катализатора — платины, получение более концентрированной азотной кислоты и увеличение ее выхода, а также разработка технологической схемы, в которой полностью исключается выброс вредных газов, [c.193]

    На рис. 105 представлена технологическая схема производства аммиачной селитры с использованием аппарата ИТН и трехступенчатой выпарки. Азотная кислота из напорного бака 1 поступает в нейтрализатор — аппарат ИТН 5 через подогреватель 2, в котором нагревается до 50 °С конденсатом сокового пара из выпарки I ступени 9. Газообразный аммиак проходит отделитель-испаритель жидкого аммиака 3, подогревается до 50—70 °С в подогревателе 4 вторичным паром (120 кПа) из расширителя конденсата 31 или поступает из цеха синтеза аммиака под давлением 200—300 кПа и подается в нейтрализатор 5. Из него раствор селитры вытекает в сборник 6, где он донейтрализовывается газообразным аммиаком и через напорный бак 8 направляется на выпарку I ступени 9. Здесь раствор выпаривается под вакуумом около 80 кПа до концентрации 80— 82 % NH4NO3 греющим паром служит соковый пар из сепаратора 7 аппарата ИТН и пар (120 кПа) из расширителя конденсата 31, получаемый при снижении давления конденсата II ступени выпарки. [c.219]

    На рис. 346 представлена технологическая схема производства аммиачной селитры зэ-на Азотная кислота из склада поступает в напорный бак 1, затем в нейтрализатор ИТН 5 через подогреватель 2, в котором нагревается до 50° конденсатом сокового пара из выпарки I ступени 9. Газообразный аммиак подается в нейтрализатор под постоянным давлением 2,5—3,5 ат. Вначале он проходит отделитель-испаритель жидкого аммиака 3 и подогреватель 4, где нагревается до 50—70° вторичным паром (1,2 ат) из расширителя конденсата 30. Из нейтрализатора ИТН 5 раствор аммиачной селитры поступает в сборник 6, где он донейтрализовывается газообразным аммиаком до нейтральной реакции и перекачивается в напорный бак 8, из которого направляется на выпарку I ступени В I ступени раствор выпаривается под вакуумом 600 мм рт. ст. до концентрации 80—827о NH4NO3. Греющим паром здесь служит соковый пар из сепаратора 7 аппарата ИТН и пар (1,2 ат) из расширителя конденсата 30, получаемый при снижении Давления конденсата П ступени выпарки [c.407]

    Эта отечественная технологическая схема производства разбавленной азотной кислоты с двумя ступенями давления (комбинированная схема) (рис. 15.15) является наиболее современ- [c.228]

    Принципиальными отличиями технологической схемы производства нитрата аммония безупарочным методом (рис. 18.6) являются использование более концентрированной азотной кислоты проведение процесса нейтрализации при повышенном (0,4 МПа) давлении быстрый контакт нагретых компонентов. [c.267]

    Получение концентрированной азотной кислоты методом прямого синтеэа основано на взаимодействии жидких оксидов азота с водой и кислородом под давлением и прн повышенной температуре. Технологическая схема производства азотной кнслоты из нитрозных газов, полученных окислением NHi кислородом воздуха, включает следующие стадии  [c.100]

    В современном производстве азотной кислоты под давлением один из сырьевых компонентов - воздух - сжимается в компрессоре и направляется в технологические аппараты. После всех превращений остается практически только азот как отходящий газ под давлением меньщим, чем давление воздуха после компрессора. Потенциал отходящего газа недостаточен, чтобы полностью компенсировать затраты на сжатие исходного воздуха, хотя можно его использовать для частичного возмещения затрат (см. рис. 3.36, 6). Увеличить энергию отходящего газа как рабочего тела турбины можно повышением его температуры. Для этого в линию отходящего газа подают топливо - природный газ - и сжигают его с остатками кислорода. Это и есть энергетический узел (рис. 3.39). Но его функции не только энергетические, но и технологические. Подогрев газа нужен для очистки его от остатков оксидов азота. Используя небольшой избыток метана, создают восстановительную атмосферу в отходящем газе, и на катализаторе в реакторе очистки оксиды азота восстанавливаются до азота. После реактора очистки потенциал горячего газа достаточен для привода компрессора воздуха с помощью газовой турбины. После турбины очищенный газ может быть направлен непосредственно в выхлопную трубу. В этой схеме также использована регенерация тепла, сокращающая расходы топлива. [c.269]

    Технологическая схема включает насыщение сульфитнодрожжевой бражки газообразным аммиаком, подогрев до температуры 120 °С и окисление воздухом, сжатым до давления 2 МПа и также нагретым до температуры реакции. Избыток аммиака в оксиаммонизированном растворе по выходе из реактора связывают азотной или фосфорной кислотой. Далее продукт концентрируют и гранулируют. Величина pH готового удобрения 6,5—7,5. По своему действию удобрение сравнимо с высококонцентрированными по азоту минеральными удобрениями и с органическими медленно усвояемыми удобрениями. [c.304]

    Разумеется, что в каждом конкретном случае вопрос выбора точки очистки в технологической схеме должен решаться с учетом ряда других факторов температурного режима работы оборудования, давления, изменения качественного и количественного состава примесей вдоль технологической линии, удаленности узла очистки от технологического объекта, наиболее чувствительного к примесям (например, контактного агрегата с платшювыми катализаторами в производстве неконцентрированной азотной кислоты) и т. п. [c.89]

    Для решения этих задач в производстве аммиачной селитры внедрен мощный агрегат АС-67 производительностью 1360 т в сутки и приняты новые технологические решения. По новой схеме (рис. УП-6) применяется азотная кислота концентрацией не менее 567о, подогреваемая до 75—80 °С в подогревателе 2 соковым паром нейтрализаторов 3. Газообразный аммиак подогревается до 120—125 °С в подогревателе 1 паровым конденсатом. На входе в нейтрализатор поддерживается давление аммиака 122—304 кПа (1,25—3,1 кгс/см ). Нейтрализация азотной кислоты проводится в нейтрализаторах 3 в слабокислой среде. Сюда же вводятся добавки, улучшающие физические свойства удобрения. [c.127]


Смотреть страницы где упоминается термин Технологические схемы азотной кислоты под давлением: [c.225]    [c.157]    [c.192]    [c.147]    [c.149]    [c.151]    [c.157]    [c.22]    [c.40]    [c.412]   
Технология минеральных удобрений и кислот (1971) -- [ c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Схема давлением

Схема ной кислот

Технологическая схема азотной кислоты

Технологическая схема под давлением



© 2025 chem21.info Реклама на сайте