Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс химико-технологический как объект оптимизации

    Сначала рассматривают вариант IV, поскольку тогда решается принципиальный вопрос об использовании математической модели при автоматической оптимизации. В данном случае могут использоваться как активные, так и пассивные методы поиска оптимума на объекте. Известно, что химико-технологические процессы, — как объекты управления — (в том числе и рассмотренные два реактора синтеза аммиака) обладают такими динамическими свойствами по сравнению со статическими свойствами возмущающих воздействий, что пассивные методы поиска оптимума фактически не применимы. Остаются активные методы поиска (экстремальные системы). Ниже будет показано, что и эти методы прямого поиска на объекте не дают нужного экономического эффекта из-за динамических свойств объекта управления и статических свойств возмущающих воздействий. [c.369]


    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]

    Одной из основных задач химической технологии является создание новых высокозффективных процессов и совершенствование уже действующих. Ее решение возможно только с помощью разработки и использования систем автоматизированного проектирования и оптимизации химико-технологических процессов. Системы автоматизированного проектирования уже внедряются в проектных и научно-исследовательских институтах, в конструкторских бюро. Их развитие обусловлено широким внедрением средств вычислительной техники и прикладного математического обеспечения. В основе таких систем лежит бурно развивающийся метод математического моделирования - изучение свойств объекта на математической модели. [c.4]

    Проектирование химико-технологических систем представляет собой процесс решения научно-технических проблем синтеза, анализа и оптимизации ХТС, воз-никающих при технологическом проектировании химических производств или предприятий, которым соответствуют данные ХТС. С точки зрения задач проектирования химических производств или предприятий ХТС можно рассматривать как некоторые инженерные или идеализированные модели новых объектов химической промышленности, которые будут построены в результате разработки проектов. [c.27]


    Начиная с 1965 г., многие разделы книги читаются авторами в лекционных курсах Математическое моделирование процессов химической технологии для студентов технологических специальностей, Математическое моделирование и оптимизация процессов химической технологии для студентов, специализирующихся в химической кибернетике в Казанском химико-технологическом институте им. С. М. Кирова, в курсе Автоматизация химических производств , в Московском и Тамбовском институтах химического машиностроения для студентов, специализирующихся в автоматизации химических производств. Учитывая ограниченный объем книги, авторы сознательно не прибегали к детальному изложению всех полученных результатов. Так, не рассматриваются вопросы идентификации математических моделей [60, 72], алгоритмы обработки результатов промышленных экспериментов [53, 72], связь оптимального проектирования (с учетом динамических свойств объектов) и задач управления [73], вопросы динамической оптимизации [68]. [c.8]

    Формализация и автоматизация процедуры построения математической модели ФХС. Из сказанного ясно, что эффективность процесса моделирования и последующего использования математической модели для решения задач оптимизации, построения модулей, анализа и синтеза химико-технологических систем в значительной мере обусловлена тем, насколько удачно учтены все перечисленные выше аспекты математического моделирования. Это в свою очередь во многом зависит от опыта, интуиции и степени квалификации исследователя, т. е. от того, что составляет субъективный фактор процесса моделирования. Удельный вес субъективного фактора при построении модели можно существенно уменьшить созданием специальной системы формализации и автоматизации процедур синтеза математических моделей. При этом вычислительная техника может и должна активно использоваться не только для решения уже готовых систем уравнений, но и на стадии формирования математического описания объекта. Такой [c.203]

    Основная цель системного подхода — раскрытие реального механизма функционирования рассматриваемой циклической адсорбционной системы с учетом ее управления для облегчения адаптации к изменяющимся внешним условиям. Анализ циклических адсорбционно-десорбционных процессов показывает, что современные установки могут служить объектом системного анализа. Во-первых, адсорбционно-десорбционный процесс — это сложная система, которая, с одной стороны, является составной частью более общей химико-технологической системы, определяющей цели и ограничения режимов функционирования с другой стороны, адсорбционно-десорбционная установка представляет собой сложную совокупность процессов в системе периодически повторяющихся в определенной последовательности взаимосвязанных явлений. Во-вторых, задачи оптимизации адсорбционной установки совпадают с целью системного анализа — выбрать наилучшие пути приспособления исследуемой системы к постоянно меняющимся и не вполне определенным условиям. Таким образом, подтверждается принципиальная возможность и необходимость системного подхода к решению задачи оптимизации адсорбционных установок.  [c.8]

    Задача оценки переменных состояния химико-технологического процесса, к которым можно отнести температуру, дав.ттение, составы фаз, расходы жидких и газообразных среди т. д., состоит в том, чтобы по показаниям измерительных приборов, функционирующих в условиях случайных помех, восстановить значения переменных состояния системы, наиболее близкие в смысле заданного критерия к истинным значениям. Применительно к химико-технологическим процессам важность решения задач оценки переменных состояния и определения неизвестных параметров модели объекта имеет три аспекта открывается возможность получать непрерывно информацию о тех переменных состояния слон<-ного объекта, непосредственное измерение которых невозможно по технологическим причинам (например, концентрации промежуточных веществ, параметры состояния межфазной поверхности, доля свободных активных мест катализатора и т. п.) реализация непрерывной (в темпе с процессом) оценки переменных состояния и поиска неизвестных параметров модели создает предпосылки для прямого цифрового оптимального управления технологическим процессом решение задач идентификации решает проблему непрерывной оптимальной адаптации нелинейной математической модели к моделируемому процессу в условиях случайных помех и дрейфа технологических характеристик последнего, что необходимо для осуществления статической и динамической оптимизации. [c.283]

    Книга представляет собой учебное пособие, в котором излагаются основы динамики процессов химической технологии, т. е. раздела инженерной химии, изучающего поведение технологических объектов в условиях, когда входные параметры подвержены возмущениям. Информация о нестационарных режимах работы технологических аппаратов и их комплексов является основой решения ряда важных инженерных задач (таких, например, как исследование устойчивости технологических режимов, их оптимизация и т. п.), которые в последнее время стали обязательным элементом программы разработки любой современной промышленной химико-технологической установки. [c.4]


    При создании автоматической системы управления (АСУ) водопроводными сооружениями целесообразно использование на всех объектах описанных выше локальных автоматических регуляторов, каждый из которых должен автономно управлять отдельным химико-технологическим процессом, а УВМ должна обрабатывать информацию, поступающую от первичных датчиков и корректировать работу локальных устройств для оптимизации всего процесса водоподготовки. При аварийных ситуациях выход из строя УВМ не нарушит работу технологических сооружений, а лишь прекратится оптимизация процесса выход же из строя одного из локальных элементов будет сразу обнаружен, и УВМ сможет принять на себя его функции. С помощью УВМ можно также осуществлять поиск оптимальных решений в случае вариации состава и свойств примесей воды и ее ионного состава, что до настоящего времени не учтено в алгоритмах управления. [c.210]

    При оптимизации химико-технологических процессов или объектов в математические модели входят параметры, определяемые с разной степенью точности. Кроме того, при реализации процесса возможны непредсказуемые изменения некоторых параметров. Следовательно, для окончательного решения задачи необходимо знать влияние такого рода факторов на выбор оптимального варианта. Это возможно сделать при анализе чувствительности целевой функции по отношению к отклонению параметров от оптимального режима. При этом необходим определенный компромисс между оптимальностью и чувствительностью. [c.78]

    Поиск оптимальных условий проведения процесса осуществляют путем целенаправленного шагового изменения независимых параметров процесса (управляющих воздействий) вплоть до достижения максимального значения целевой функции Е. Большая инерционность процесса и потери н поиск исключают возможность проведения поиска непосредственно на объекте. При определении оптимального технологического режима нужно использовать математические модели процесса путем многовариантных расчетов на ЭЦВМ. Оптимизации химико-технологических процессов посвящены монографии [30—33]. [c.124]

    Бурный рост химической промышленности в послевоенные годы обусловил пересмотр способов исследования и оптимизации химико-технологических процессов. Применявшиеся ранее для изучения многофакторных химических процессов однофакторные методы не гарантировали оптимальности разработанных режимов, требовали длительного времени, давали недостаточное количество информации об изучаемом объекте. Все это явилось одной из основных причин быстрого развития и внедрения в практику статистических методов планирования экстремальных экспериментов. [c.7]

    Для того чтобы осуществить автоматическую оптимизацию на практике, необходимо прежде всего изучить объект оптимизации, т. е. знать, как изменяются факторы, характеризующие эффективность процесса, с изменением управляющих параметров (температуры, давления, активности катализатора и т. п.). Результаты такого изучения оформляются в виде системы дифференциальных уравнений, рещение которых и служит для вычислительного устройства средством нахождения оптимального режима процесса. Здесь возникает необходимость в полном математическом описании химико-технологического процесса. [c.121]

    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    Количеств, описание процессов X. т. основано на законах хим. термодинамики, переноса кол-ва движения, теплоты и массы (см. Переноса процессы. Турбулентная диффузия) и хим. кинетики. При расчете и проектировании химико-технол. процессов и аппаратов определяют 1) материальные потоки перерабатываемых в-в 2) энергетич. затраты, необходимые для осуществления процессов 3) осн. ра.змеры. laшин и аппаратов. Анализ кинетич. закономерностей позволяет определить оптим. условия ведения процесса, при к-рых размеры аппаратов будут минимальными. Матем. моделирование, широко используемое при расчетах и проектировании хим. процессов и оборудования, включает формализацию процесса в виде матем. записи, задание разл. значений режимных параметров системы для отыскания на ЭВМ значения выходных параметров и эксперим. установление адекватности модели изучаемому объекту. Оптимизация работы агрегатов и химико-технол. систем осуществляется по экономическим и энерго-технологическим показателям. [c.647]

    По нашему мнению, здесь допущено некоторое смешение понятий результат и модель . Результаты оптимизации являются продуктом решения соответствующей оптимизационной задачи и никак не могут синтезироваться в экономико-математическую модель. Под этим термином обычно понимают математическое описание исследуемого экономического процесса или объекта. В случае, если используется оптимизационная модель, то она кроме системы уравнений математического описания процесса и ограничений, накладываемых на переменные параметры процесса, содержит также и особого рода уравнение, назьшаемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по како%1у-либо показателю [6, с. 46]. Применительно к моделям химико-технологических систем (ХТС), и в частности к моделям типовых процессов химической технологии, таких критериев может быть несколько. Как будет показано в дальнейшем, решение оптимизационной задачи должно способствовать нахождению режимов, компромиссных для всех возможных критериев эффективности. Поскольку такого типа модели отражают, как правило, не только технические, но и экономические характеристики проектируемых или находяшдхся в эксплуатации ХТС, целесообразно ввести понятие технико-экономическая модель химико-технологической системы . [c.5]

    Приведенные схемы автоматизации охватывают отдельные стадии химико-технологического процесса обработки воды. Уже их использование позволяет получить значительную экономию в расходе реагентов и улучшить качество очистки воды. Гораздо большей экономической эффективности можно достигнуть при комплексной автоматизации станций водоподготовки с использованием централизованной системы сбора и обработки информации. Это связано с большим количеством контролируемых объектов, где режимы обработки могут быть разными, огромным объемом информации, необходимой для научно обоснованного управления технологическими сооружениями, а также тем, что химико-технологические процессы взаимосвязаны и для их оптимизации необходимо воздействие на ряд контуров системы. Выше было показано, что на процессы коагуляции примесей воды влияют количество, состав и свойства окрашенных гуминовых соединений и взвешенных веществ, ионный состав обрабатываемой воды, взаимное влияние применяемых реагентов и пр. Хлорирование воды протекает по-разному в зависимости от наличия в ней легкоокисляющихся примесей, органических веществ и аммиака или его солей. В этом случае оперативный контроль и оптимальное управление процессами водоподготовки могут <зыть успешно реализованы лишь при использовании управляющих вычислительных машин (УВМ). [c.210]

    Объектом оптимизации, рассматриваемым в настоящей монография, является химико-технологический процесс (рис. 1). Входными переменнъши х = (a j,. . ., x ) процесса служат параметры, определяющие материальные и эпергетические потоки, подводимые к системе расходы, концентрации, температуры, давления, энтальпии и т. д. Выходные переменные у = (г/ , у— те же параметры. но отнесенные к потокам на выходе системы. Переменные хну являются режимными. [c.14]

    То, что химико-технологические системы являются ремонтируемыми и восстанавливаемыми в процессе функционирования объектами, приводит к возможности управления процессом их технического обслуживания с целью повышения надежности этих систем. При этом, помимо оптимизации надежности элементов и объекта в целом (обеспечение их заданной надежности при минимальных или предельно допустимых затратах), возникает необходимость выбора оптимальных параметров профилактического обслуживания и ремонта оборудования на протяжении всего периода работы системы, т. е. выбора стратегии обслуживания отдельных аппаратов и объекта в целом, без которой система будет являться в лучшем случае механическим соединением объектов, средств, персонала, не объединенных общей идеологией для выполнения заданшх функций. [c.743]


Смотреть страницы где упоминается термин Процесс химико-технологический как объект оптимизации: [c.283]    [c.378]   
Методы оптимизации сложных химико-технологических схем (1970) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Оптимизация процессов

Оптимизация процессов оптимизация

Оптимизация технологического процесса

Технологические объекты



© 2025 chem21.info Реклама на сайте