Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Косвенное действие

Рис. 7-10. Электрическая печь сопротивления косвенного действия Рис. 7-10. <a href="/info/95139">Электрическая печь сопротивления</a> косвенного действия

Рис. 2-28. Общий вид дуговой печи косвенного действия с бочкообразной формой Рис. 2-28. Общий вид <a href="/info/28067">дуговой печи косвенного действия</a> с бочкообразной формой
    Электрические печи сопротивления по способу превращения электрической энергии в тепловую разделяются на печи косвенного действия и установки прямого нагрева. [c.37]

    Ингибирование. Одним из наиболее простых, эффективных и во многих случаях экономически целесообразных методов борьбы с коррозией является ингибирование. Несомненным достоинством этого метода следует считать возможность его применения без изменения соответствующих технологических процессов и аппаратурного оформления иа уже существующих промышленных объектах. Большинство ингибиторов — органического происхождения, действие которых основано на адсорбции. Они образуют адсорбционные слои, действующие как фазовый, а в случае хемосорбции и как энергетический барьер. Механизм защитного действия частично зависит от способности ингибитора хемосорбироваться на поверхности металла. Ингибиторы разделяются на катодные, анодные косвенного действия [284—287]. [c.228]

    За рубежом появились проекты плазменных плавильных печей с плазмотронами косвенного действия на переменном токе (возможна трехфазная печь не нужны подовые электроды). Для того чтобы обеспечить устойчивость дуги переменного тока, параллельно с ней непрерывно горит дежурная дуга постоянного тока небольшой мощности. [c.246]

    В последнее время появились дуговые печи косвенного действия с бочкообразной формой плавильного пространства (рис. 2-28). При [c.75]

    КОНСТРУКЦИИ ДУГОВЫХ ПЕЧЕЙ КОСВЕННОГО ДЕЙСТВИЯ [c.74]

    Электрические дуговые печи прямого и косвенного действия вакуумные дуговые печи плазменные дуговые установки [c.8]

    Дуговые печи косвенного действия дуга горит между электродами, а расплавляемому металлу тепло от дуги передается [c.4]

    Электрические печи сопротивления косвенного действия получили большое распространение. Б них тепло выделяется при прохождении электрического тока по специальным нагревательным элементам выделяющееся тепло передается материалу лучеиспускат ем, теплопроводностью и конвекцией. В таких печах осуществляется нагревание до температур 1000 — 1100° С. Схема такой печи показана на рис. 7-10. Футеровка печи 2 выполнена из огнеупорного кирпича. В пазах футеровки уложены спиральные нагревательные элементы 4, к которым подводится ток через электрошины 5. Тепло, выделяющееся при прохожденпп электрического тока через спиральные нагревательные элементы, передается обогреваемому аппарату 7 лучеиспусканием и конвекцией. Тепловая изоляция 3 уменьшает потери тепла в окружающую среду. [c.172]


    На электротермическом источнике теплоты работают печи дуговые прямого и косвенного действия, дуговые сопротивления, электронно-лучевые, плазменные, оптические, сопротивления, индукционные и др. [c.53]

    В концентрированных растворах радиолитические превращения происходят не только в результате косвенного действия излучения, проявляющегося во взаимодействии вещества с продуктами радиолиза воды, но также вследствие прямого воздействия излучения на растворенное вещество. [c.194]

    Топливные элементы еще недостаточно апробированы, однако использование экономичных электрогенерирующих топливных элементов перспективно. Замена в топливных элементах косвенного действия природного газа на СНГ при условии применения паровой конверсии углеводородов технически легко осуществима. Топливные элементы прямого действия, работающие на СНГ, еще не демонстрировались. Температура топливных элементов на углеводородах в настоящее время достигает 200—400 °С, но она может быть снижена за счет создания более активных электролитов и электродов. Стоимость электродов достаточно высока, так как их изготовляют из высокочистых дорогих металлов, в частности из платины. Однако она может быть снижена за счет уменьшения содержания в них дорогостоящих чистых металлов или усиления химической активности других материалов, используемых для изготовления электродов. В настоящее время многое делается в направлении повышения эффективности топливных элементов. В экспериментальных образцах к. п. д. преобразования химической энергии топлива в электрическую уже составляет 80 % и даже более. Теоретически это значение может быть еще более высоким. [c.333]

    При частичном проникновении жидкости или пара в матрицу возникают градиенты концентраций, которые действительно оказывают прямое механическое действие вследствие неоднородного набухания или косвенное действие вследствие неоднородной релаксации или распределения напряжений. Подобные действия даже усиливаются в присутствии температурных градиентов и могут вызвать быстрое образование обычных трещин и трещин серебра. В случае медленного проникновения окружающей среды в однородную матрицу с достаточно перепутанными цепями вынужденные напряжения обычно снимаются упругими или вязкоупругими силами. Например, в листах поликарбоната после проведения искусственных погодных испытаний не обнаруживаются трещины даже после воздействия суровых температурно-влажностных циклов [212]. Однако за относительно короткий период, 30—32 мес, естественных погодных испытаний на стороне, обращенной к солнечным лучам, возникала сетка поверхностных микротрещин. Путем сравнения с искусственным ультрафиолетовым облучением образцов авторы работы [212] смогли показать, что фотохимическая деградация поверхностных слоев вносит дефекты в материал и снижает прочность полимера в такой степени, что вызванные физически неоднородные напряжения стимулировали образование микротрещин, а не рассасывание неоднородностей. Влияние жидкой среды на образование обычной трещины и трещины серебра будет рассмотрено в разд. 9.2.4 (гл. 9). [c.319]

    Этот вид имеет и другие названия - независимая плазменная струя или плазменная дуга косвенного действия. При этом дуговой разряд 4 возникает между электродом 1 и корпусом плазмотрона 2. Поток газа 3, проходя через столб дуги 4, образует кинжалообразный язык плазмы 5 с температурой порядка 10000 - 15000 °С, используемый для проплавления разрезаемого металла 6. [c.117]

    В современной сварочной технике применяют три схемы получения плазмы. По первой получают сжатую дугу прямого действия, когда анодом служит обрабатываемый материал, по второй - сжатую дугу косвенного действия, которая возникает между вольфрамовым электродом и внутренним соплом плаз-мофона, вытекает из него в виде плазменной струи и электрически не связана с обрабатываемым металлом. Вторую схему используют при обработке неэлектропроводных материалов, а также при напылении и закалке. По фетьей схеме с комбинированным подключением плазмотрона к источнику питания между вольфрамовым элекфодом и соплом анода зажигается вспомогательная сжатая дуга косвенного действия, обладающая электропроводностью и образующая при соприкосновении с токоведущей обрабатываемой деталью сжатую дугу прямого действия. Третья схема получила наибольшее распространение, ее применяют при сварке, наплавке, резке материалов. КПД при нагреве сжатой дугой прямого действия - 30 - 75%, косвенного - 10 - 50%. [c.57]

    Плазменные горелки работают довольно устойчиво, несмотря на высокую температуру плазменной струи. Это объясняется тем, что сопло, изготовленное из материала с высокой теплопроводностью (красная медь), охлаждается циркулирующей вокруг него водой в отличие от обычных горелок, при Геняемых для сварки в среде защитных газов. Вода, охлаждающая стенки сопла, препятствует нагреву и ионизации наружного слоя газа, проходящего через дугу. Поэтому наружный газовый слой имеет низкую температуру и в отличие от остальной части газового потока неэлектропроводен. Он образует противоэлектрический и противотермический изолирующий слой между стенками сопла и потоком плазмы. С увеличением расстояния от центра токопроводящего канала температура понижается. Сжатая дуга косвенного действия может иметь различную длину. Внутри сопла она сжата, однако при выходе за его пределы начинает постепенно расширяться до размеров, равных свободной дуге, причем тем быстрее, чем сильнее сжат разряд и чем меньше расход газа. На расстоянии 25 - 30 мм от нижнего среза сопла сжатая дуга расширяется до свободных размеров. [c.58]


    Печи сопротивления косвенного действия могут по-отучать питание непосредственно от цеховой сети с напряжением 220, 380 и 660 В или от понижающих электропечных трансформаторов однофазного и трехфазного исполнений (серий ТПО и ТПТ) с широким диапазоном регулирования вторичного напряжения и от автотрансформаторов (серии АПТ). Эти серии разработаны с учетом требований (по значениям вторичного напряжения и диапазону регулирования) питания печей с нагревателями из сплавов сопротивления, из чистых тугоплавких металлов и из неметаллических материалов [5, 28]. [c.77]

    Различают плазмотроны прямого действия, когда анодом является обрабатываемый материал (сталь в сталеплавильной плазменной печи свариваемый или подвергаемый резке материал в плазменных сварочных установках), и косвенного действия, когда анодом является корпус плазмотронов (рис. 4.27), а нагрев осуществляется выходящим из сопла плазменным факелом. [c.243]

    Дефлегматоры и конденсаторы служат для конденсации поступающих из колонн паров и питания, их флегмой. Принцип работы аппаратов косвенного действия основан на последовательном перетоке спиртовой жидкости от колонны к колонне. Так, подогретая бражка поступает на верхнюю тарелку бражной колонны, где полностью истощается от спирта. Барда выводится с нижней части бражной колонны. В нижнюю часть бражной, эпюрационной, ректификационной и сивушной колонн через барботер подается пар. Пары спирта конденсируются и дистиллят из бражной колонны поступает в эпю-рационную колонну, где происходит выделение из него [c.3]

    Итак, дуговые печи косвенного действия— небольшие (до 500—600 ква), обычно однофазные печи, служащие для плавления металлов с температурой плавления не выше 1 300—1400° С, в основном печи для плавления цветных металлов. В ннх переплавляют как с целью рафинировки, так и для фасонного литья медь и ее сплавы — бронзы, латуни и т. п. и другие цветные [c.5]

    К дуговым печам косвенного действия можно отнести также плазменные установки (плазмотроны) и дуговые нагреватели газа. В этих установках дуга постоянного или переменного тока горит между электродами в потоке газа, нагревая последний (рис. 0-2,ж). Нагретый газ может быть использован для химических, металлургических и испытательных целей (дуговые нагреватели газа) или обрабатываемый материал может вводиться непосредственно в плазмотрон, в зону дуги (например, установки для напыления). [c.5]

    Дуговые печи косвенного действия применяют почти исключительно для переплавки цветных металлов (иногда чугуна), поэтому температуры в них значительно меньше. Кроме того, в них производят лишь расплавление и перегрев металла без шлака. Поэтому их футеровку можно выполнять из шамота и лишь при выплавке чугуна футеровка должна быть из динаса. Дуга в этих печах горит только между электродами, поэтому ее режим спокойнее. С другой с+ороны, футеровка дуговой печи косвенного действия находится по,<, прямым воздействием излучения дуг, что требует дополнительных мер для ее равномерного нагрева, особенно в конце плавки. Для этого в современных печах применяют качание корпуса печи, благодаря чему нагретые части футеровки периодически омываются (и тем самым охлаждаются) расплавленным металлом, более холодным, чем футеровка. [c.46]

    Как указывалось, дуговые печи косвенного действия выполняются качающимися однофазными с двумя горизонтально расположенными электродами и цилиндрическим кожухом (рис. 2-27). Печи используются в основном для переплава медных сплавов, идущих на фасонное литье иногда печи применяются для выплавки некоторых сортов чугуна и никеля. Основное их преимущество— сравнительно небольшой угар металла, так как зона высоких температур (дуга) не соприкасается непосредственно с расплавляемым металлом. [c.74]

    Огнеупорную часть футеровки следует выкладывать из фасонных камней (блоков) на растворе огнеупорного цемента. При отсутствии специальных блоков допустимо применение обычных стандартных кирпичей. Печи косвенного действия, как правило, работают на переплаве цветных металлов температуры в них сравнительно невысоки и слон футеровки относительно тонки огнеупорный слой обычно имеет толщину 120—140 мм, теплоизоляционный 60—80 мм. [c.75]

    На дуговых печах косвенного действия применяют только графи- [c.79]

    Все изложенное относится и к дуговым печам косвенного действия. Выбор их основных электрических параметров мощности питающего трансформатора, его вторичных напряжений, числа ступеней напряжения и реактивности реактора также производится на основании данных работы лучших печей, находящихся в эксплуатации. [c.90]

    В дуговых печах косвенного действия, как указывалось, применяют графитированные электроды, а в сталеплавильных печах прямого действия — как графитированные, так и угольные Применение угольных электродов из-за науглероживания металЛа, более частых поломок и большего веса ограничивают малыми печами, выплавляющими сталь для фасонного литья и производящими переплав чугуна. Последняя серия отечественных печей малой емкости предусматривает работу только на графитированных электродах. [c.90]

    В печах косвенного действия плавильное пространство имеет форму цилиндра или бочки, расположенных горизонтально. В отечественных печах косвенного действия длина плавильного пространства несколько больше его диаметра их отношение колеблется от 1,25 до 1,6. [c.96]

    По способу превращения электрической энергии в тепловую различают электрические печи сопротивления индукционные и дуговые. Электрические печи сопротивления делятся на нечи прямого действия и печи косвенного действия. [c.172]

    Первая часть книги Электрические промышленные печи , написанная А. Д. Свенчанским, вышла в свет в 1958 г. и описывала электрические печи сопротивления. Настоящая книга является ее продолжением. В ней описаны дуговые печи и установки всех видов дуговые сталеплавильные печи прямого действия, дуговые печи для плавления цветных металлов косвенного действия, вакуумные дуговые печи (для плавки на слиток и гарнисажные), руднотермические печи всех типов, плазменные установки, установки электрошлакового переплава, а также электроннолучевые установки и некоторые печи сопротивления (например, для производства карборунда), которые, не являясь собственно дуговыми, включены сюда по методическим соображениям. [c.3]

    Графитация угольных изделий, т. е. получение искусственного графита, требует длительного (40—100 ч) нагрева при 2300—2800 ° С. Работа печи косвенного действия при таких температурах была бы возможна только при наличии вакуума или нейтральных защитных газов в рабочей камере для защит1л изделий и нагревателей от окисления. [c.88]

    Для напыления и нанесения покрытий применяют плазмотроны постоянного тока косвенного действия. Напыляемый материал вводигся в состав катода и прн плаа-лении последнего поступает В БИде мелких капель в плазменный факел, обдувающий изделие, на которое нужно нанести покрытие. Если материал покрытия не электропроводен, он может быть введен в виде порошка в камеру плазмотрона. Благодаря большой скорости мельчайшие частицы внедряются в напыляемую поверхность, образуя на ней плотный слой покрытия. [c.246]

    В книге описаны электрические дуговые печи и установки всех типов, в которых источником нагрева (полного или частичного) является дуга — электрический разряд в газовой среде или вакууме, а именно дуговые сталеплавильные печи (прямого действия), дуговые печи для плавления цветных металлов (косвенного действия), вакуумные дуговые печи, установки электроихлакового переплава, плазменные установки и руднотермические печи всех типов. Описаны также промышленные электроннолучевые устройства. [c.2]

    Так как выплавка чугуна из руды в дуговой печи в то время не могла экономически ко нкурировать с доменным процессом, то печи Стассано вскоре были переоборудованы для плавки стали из скрапа и были первыми промышленными дуговыми печами косвенного действия. Сталеплавильная печь Стассано (рис. 0-3,6) была значительно сложнее современных печей в ней было предусмотрено механическое перемешивание жидкого металла в садке, для чего печь вращалась на специальной платформе с роликами, установленной наклонно, так что ее ось описывала кояус. Это, естественно, затрудняло подвод энергии к электродам, который приходилось осуществлять через щетки, скользящие по бронзовым контактным кольцам. Еще труднее выполнить подвод воды, охлаждающей электрододержатели трех электродов (печь работала на трехфазном токе), скользящие вдоль направляющих и управляемые с помощью гидравлических приводов. Электроды, окруженные пустотелыми цилиндрами, охлаждаемыми водой, установлены слегка наклонно и их оси пересекаются на оси печи. Футеровка печи была выполнена из магнезита плавильное пространство ввиду сильного излучения дуг на свод было сделано очень высоким свод имел вид купола и составлял одно целое с кладкой стен. Сверху свода имелся слой теплоизоляции, что сильно ухудшало условия работы огнеупоров. Шихту загружали через боковое отверстие. [c.7]

    Первые дуговые печн прямого действия для выплавки стали были построены Эру в 1899 г. (рис. 0-3,а и 0-4). Их конструкция была очень проста в прямоугольную вытянутую ванну сверху через отверстие в съемном своде входили два электрода, закрепленные в электрододержателях, перемещающихся вверх и вниз вдоль вертикальных стоек, чем и осуществлялось регулирование тока дуги. Печь загружали через торцевые дверки, металл сливали через летку прн ее наклоне. Основным недостатком этих печей были невысокие удельная мощное) I) и рабочее напряжение, из-за чего расплавление металла шло медленно, тепловые потери и удельный расход были велики. Основное преимущество печей прямого действия — возможность концентрации больших мощностей и тем самым ускорение плавки здесь использовано не было, н поэтому индукционные печн со стальным сердечником и дуговые печи косвенного действия могли в то время успешно конкурировать с ними. [c.11]

    Plie. 2-27, Общий вид дуговой иечи косвенного действия для плавления цветных металлов и сплавов. [c.75]

    Парк брагоректификационного оборудования спиртовой промышленности в основном представлен аппаратами косвенного действия, которые комплектуются из бражной, эпюрационной и ректификационной колонн. Аппараты производительностью более 3000 далкутки оборудуются сивушными колоннами. Каждая колонна снабжена дефлегматором и конденсатором, а также контактными тарелками, на которых осуществляется контакт флегмы, стекающей вниз по колонне, с парами, поднимающимися вверх по колонне. [c.3]

    Основная характеристика брагоректификационных аппаратов косвенного действия фирмы Grimma (ГДР) и завода Комсомолец приведена в табл. 5 и 6 двух-поточных брагоректификационных аппаратов — в табл. 8. Все брагоректификационные и ректификационные аппа-10 [c.10]

    БРАГОРЕКТИФИКАЦЙОННБШ АППАРАТ КОСВЕННОГО ДЕЙСТВИЯ ПРОИЗВОДИТЕЛЬНОСТЬЮ 3000 дал СПИРТА В СУТКИ [c.51]


Смотреть страницы где упоминается термин Косвенное действие: [c.82]    [c.199]    [c.83]    [c.6]    [c.11]    [c.13]    [c.77]    [c.10]    [c.51]   
Введение в радиационную химию (1967) -- [ c.10 , c.235 ]




ПОИСК







© 2024 chem21.info Реклама на сайте