Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофобные коллоидные системы методами

    Для очистки лиофобных коллоидов применяются те же методы, что и для очистки растворов высокомолекулярных веществ. Коллоидные системы часто содерж,ат низкомолекулярные растворимые компоненты, которые по той или иной причине необходимо удалить. Таковыми могут быть, например, электролиты, присутствие которых обычно уменьшает стабильность коллоида, так что полученный коллоид следует от них очищать. Общий принцип отделения коллоида от молекулярно-растворенных веществ основан на большой разнице в размерах между коллоидными частицами и молекулами и на способности последних проникать сквозь очень тонкие поры в мембранах. [c.14]


    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]

    КОЛЛОИДНЫЕ СИСТЕМЫ И МЕТОДЫ ПОЛУЧЕНИЯ ЛИОФОБНЫХ КОЛЛОИДОВ [c.292]

    Коагуляция лиофобных золей. Важнейшим методом коагуляции лиофобных золей является прибавление к ним электролитов. При коагуляции уменьшение степени дисперсности может и не достигать уровня, при котором наступает седиментация или выпадение осадка, или помутнение, или, наконец, изменение цвета раствора. Однако часто процесс коагуляции приводит и к таким результатам. В этих случаях эффект коагуляции становится видимым простым глазом, и эта стадия, или период, получила название стадии явной коагуляции, в отличие от стадии скрытой коагуляции, когда ее нельзя еще заметить по внешнему виду коллоидной системы. [c.512]


    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и промежуточные системы, которые трудно отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 5п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетеро-генными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза может находиться как в виде коллоидных частиц, так и в виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]

    Вопросы устойчивости дисперсных систем занимают центральное место в коллоидной химии, поскольку основной класс коллоидных систем — лиофобные коллоиды — термодинамически нестабильны, т. е. склонны к коагуляции. Коагуляция представляет собой процесс слипания (или слияния) частиц дисперсной фазы при потере системой агрегативной устойчивости. Придание системам устойчивости требует специальных методов стабилизации. Только при таких условиях возможно получение и использование многих ценных материалов, продуктов и других изделий, в частности лекарственных препаратов, аэрозольных средств и т. д. [c.424]

    Если вспомнить график зависимости удельной поверхности Яуд частиц дисперсной фазы от их размеров (1 (см. рис. 1.2), станет ясно, что лиофобные золи занимают промежуточное положение между истинными растворами и грубодисперсными системами. Следовательно, получить коллоидные растворы можно измельчением крупных частиц до коллоидных размеров (диспергационные методы) и укрупнением молекул и ионов (конденсационные методы). [c.80]

    На основании сказанного выше величину осмотического давления коллоидных растворов определяют прямым путем, однако и этот метод очень часто встречает большие трудности. Следует учесть, что суш,ествуют две группы коллоидных систем лиофобные системы, в которых между дисперсной фазой и дисперсионной средой взаимодействие выражено в очень слабо й [c.48]

    Эмульсии представляют собой дисперсные системы, состоящие из мельчайших капель одной жидкости, распределенной в другой, в которой первая жидкость нерастворима или мало растворима. Размеры капелек составляют несколько (1—50) микрон в поперечнике. Одна из фаз эмульсии обычно вода, другой может быть любая органическая жидкость, не смешивающаяся с водой. Эту жидкость принято называть маслом. Кроме воды и масла, устойчивая эмульсия обязательно содержит третий компонент, эмульгатор, сообщающий агрегативную устойчивость системе. В зависимости от того, какая фаза образует дисперсионную среду, различают эмульсию маслы в воде, м1в, и воды в масле б1м. Эмульсии получаются, главным образом, дисперсионным методом путем встряхивания или перемешивания. Разбавленные (меньше 1%) и концентрированные (больше 1%), эмульсии различаются по природе агрегативной устойчивости. В стабилизации первых главную роль играет электроки-нетический потенциал и связанная с ним толщина сольватной оболочки. Заряженные одноименно капельки отталкиваются и не слипаются. Эти эмульсии приближаются по свойствам к лиофобным коллоидным системам. В концентрированных эмульсиях, имеющих большое практическое значение, устойчивость определяется, главным образом, характером прочной межфазной поверхностной пленки, не разрывающейся при столкновениях. Пленка обычно образуется третьим веществом, эмульгатором. Значение пленки эмульгатора сводится к понижению поверхностного натяжения на границе двух фаз и уменьшению, таким образом, работы образования поверхности раздела при диспергировании, согласно уравнению/ =5 а. При понижении поверх- [c.227]

    Среди дисперсных систем коллоидные растворы занимают промежуточное положение между суспензиями и истинными растворами диаметр распределенных частичек в жидкой фазе коллоидного раствора колеблется от 1 до 100 ммк. Коллоидные растворы могут быть получены двумя различными- методами дисперсионным (уменьшением величины частиц более грубых дисперсных систем) и конденсационным (увеличением величины частиц истинных растворов, обладающих молекулярной или ионной дисперсией вещества). Коллоидные растворы называются также золями. В отличие от истинных растворов коллоидные растворы являются оптически неоднородными системами, так как световые лучи в них подвергаются светорассеянию этим объясняется опалесценция коллоидных растворов (различные окраски в отраженном и проходящем свете), что служит отличительным признаком коллоидных систем. Так как величина частиц коллоидного раствора одного и того же вещества колеблется в широких пределах, то окраска этих растворов может быть различной. Для коллоидных растворов характерны все явления, происходящие на поверхности раздела двух фаз, особенно процесс поглощения различных веществ на поверхности (адсорбция). Одним из продуктов адсорбции из растворов могут быть молекулы растворителя, в частности воды. Коллоидные системы, в которых частички неспособны взаимодействовать с дисперсионной средой (в частности, с водой), а следовательно, и не могут в ней растворяться, называются лиофобными (гидрофобными). Например, к гидрофобным коллоидам относятся коллоидные металлы, сульфиды. Лиофильные коллоиды характеризуются тем, что дисперсная фаза взаимодействует с дисперсионной средой и способна в ней растворяться. Если дисперсионной средой служит вода, коллоиды называются гидрофильными (например, желатин, клей и др.). Частички коллоидного раствора, помимо молекул воды, могут адсорбировать на своей поверхности ионьь [c.244]


    Из изложенного следует, что идеи А. В. Думанского затрагивают не только вопросы теории коллоидного состояния, но и разработку теоретических основ структурообразования в дисперсных системах на основе физико-химической механики, развитие исследований в области коллоидно-химического материаловедения и биологической коллоидной химии. Они получают свою реализацию во многих научных учреждениях СССР, особенно в Институте коллоидной химии им. А. В. Думанского АН УССР, Московском и Ленинградском университетах и др. В дальнейшем [351 теория поверхностных явлений, лиофильности, общие принципы модифицирования твердых дисперсных фаз, теория устойчивости лиофильных и лиофобных систем, коллоидно-химическая теория растворов поверхностно-активных веществ, синтетических и природных полиэлектролитов будут рассматриваться в связи с развитием физико-химической теории структурообразования в дисперсных системах, методов управления их механическими свойствами. [c.237]

    Другой метод классификаци коллоидных систем основан на учете сил взаимного притяжения между диспергированными частицами. Если это притяжение велико, система называется лиофильной, если мало — лиофобной. В обычных коллоидных системах с водой в качестве дисперсионной среды применяются имеющие то же значение термины гидрофильный и гидрофобный , что в переводе означает любящий воду и ненавидящий воду . [c.134]

    Лиофобные золи, как вообще дисперсные системы, в соответствии с их промежуточным положением между миром молекул и крупных тел, могут быть получены двумя путями методами диспергирования, т. е. измельчения крупных тел, и методами конденсации молекулярно- или ионнорастворепных веществ. Измельчепие путем дробления, помола, истирания дает сравнительно крупнодисперсные порошки О 60 мкм). Более тонкого измельчения достигают с помощью специальных аппаратов, получивших название коллоидных мельниц, или применяя ультразвук. [c.312]

    Аналогичный метод использован и для изучения влияния концентрации дисперсной фазы лиофобных золей на их устойчивость, при различных концентрациях электролитов. Учет коллективного-взаимодействия коллоидных частиц позволяет объяснить существенные различия в закономерностях коагуляции электролитами разбавленных и нарушении устойчивости концентрированных лиофобных золей. В частности, было найдено, что при постоянной объемной концентрации дисперсной фазы устойчивость концентри рованных систем с увеличением размера частиц проходит через максимум. Этот вывод был экспериментально подтвержден Отте-вилем 111оу. Если же численная концентрация частиц остается неизменной, то устойчивость системы с увеличением размера частиц, снижается монотонно. Одновременно для больших сферических частиц и толстых пластинчатых частиц характерно наличие глубокого вторичного минимума на потенциальных кривых, вследствие чего процессы дальней агрегации должны быть особенно распространены в низкодисперсных системах. [c.296]

    Мы остановились на рассмотрении этих примеров, чтобы, с одной стороны, показать всю сложность проблемы получения коллоидных систем и трудность вследствие этого описания строения их мицелл, а с другой стороны, дать ясное представление о возможных путях использования в промышленности методов получения коллоидов. К лиофобным системам следует отнести и эмульсии, устойчивость которых также связана только с активностью стабилизатора к водной фазе. Рассматривая всю совокупность изложенных фактов, мы приходим к выводу, что в настоящее время хотя бы в практических целях следует пользоваться общим правилом заряд ядра коллоидной частицы определяется родственными ионами или группами. Это чисто эмпирическое правило позволяет достаточно хорошо ориентироваться в этой области независимо от сложности состава ядра коллоидной частицы. Пользуясь им, можно большей частью предсказать все основные свойства кол-.яоидных часиц. Например, частица иодистого серебра в избытке AgNOз будет иметь положительный заряд  [c.197]

    Физико-химические свойства осадков в значительной степени зависят от сольватационных явлений в системах. Все образующиеся осадки, как правило проходят стадию коллоидной дисперсности и их сольватация Удаляется стабилизирующим фактором. Осадки по их взаимодействию с маточным раствором делятся на лиофильные и лиофобные. При всем одно и то же соединение может быть получено в виде лиофильтого или лиофобного осадка в зависимости от условий осаждения. Поэтому при разработке технологии осаждения, включая выбор метода и параметров процесса, должны учитываться явления сольватации в данной системе. [c.87]


Смотреть страницы где упоминается термин Лиофобные коллоидные системы методами: [c.12]    [c.12]    [c.296]    [c.155]   
Коллоидная химия (1960) -- [ c.14 , c.18 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные

Системы коллоидные лиофобные



© 2025 chem21.info Реклама на сайте