Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изобарная зависимость от температуры

Таблица 2.6. Изобарный коэффициент расширения a топлива Т-6 в зависимости от температуры в интервале давлений 0,1—10 МПа Таблица 2.6. <a href="/info/349136">Изобарный коэффициент</a> расширения a топлива Т-6 в зависимости от температуры в интервале давлений 0,1—10 МПа

    V. ЗАВИСИМОСТЬ ИЗОБАРНЫХ ТЕПЛОЕМКОСТЕЙ НЕКОТОРЫХ ВЕЩЕСТВ ОТ ТЕМПЕРАТУРЫ Коэффициенты в уравнении вида Ср = щ +а Г + а2Т + [Ср в кал (град моль)  [c.607]

    Зависимость изобарного потенциала реакции и константы равновесия от температуры [c.306]

    Активностью (точнее — термодинамической активностью) данного компонента называется такая величина, которая связана с другими термодинамическими величинами, так же как в идеальных растворах с ними связана концентрация этого компонента Активность данного компонента зависит от состава раствора (точнее— от концентраций каждого из компонентов), а также от температуры и давления. К таким свойствам принадлежат изобарный потенциал, парциальные давления насыщенного пара, температура замерзания, температура кипения, константа равновесия химической реакции и др. Для выражения соотношений между активностью и этими свойствами в любом растворе или газовой смеси достаточно подставить величину активности вместо концентрации в соотношения, выражаюш,ие зависимость этих свойств от концентрации в простейших (идеальных) растворах. [c.313]

    Зависимость изобарного потенциала реакции от температури 307 [c.307]

    Зависимость изобарного потенциала реакции от температуры 30  [c.309]

    Как видно из уравнений (П.79), (11.81) и (11.83), для расчета изобарно-изотермического потенциала достаточно знать константу равновесия (/Ср) лишь при одной температуре Т и нет необходимости изучать температурную зависимость /Ср. Это очень важно, так как непосредственное изучение равновесия далеко не всегда возможно, а выражения (11.81) и (11.83) позволяют рассчитать величины Кр, не прибегая к прямому изучению равновесия, т. е. [c.85]

Рис. 97. Зависимость константы равновесия К (а) и изобарно-изотермического потенциала ДО (б) комплексообразования с н-алканами от температуры (растворите.гь — бензол). Рис. 97. <a href="/info/666659">Зависимость константы равновесия</a> К (а) и <a href="/info/3388">изобарно-изотермического потенциала</a> ДО (б) комплексообразования с н-алканами от температуры (растворите.гь — бензол).
    При рассмотрении про цессов перегонки и ректификации, проводимых практически под постоянным внешним давлением, особый интерес представляют изобарные равновесные кривые кипения и конденсации, характеризующие зависимость температуры кипения жидких растворов и температуры конденсации паровых смесей от концентрации. [c.24]


    Если при данной температуре один из компонентов, например компонент В, находится в твердом (кристаллическом) состоянии, то он будет растворяться в жидкости А до тех пор, пока не образуется насыщенный раствор, в котором мольная доля компонента В равна X. Изменение изобарного потенциала раствора с изменением его состава в этом случае изображается участком кривой, показанной на рис. V, 5. Точка 0 отвечает изобарному потенциалу насыщенного раствора. При добавлении твердого компонента В к насыщенному раствору дальнейшего растворения его не происходит и система состоит из двух фаз—насыщенного раствора и кристаллов компонента В. Зависимость изобарного потенциала этой системы от состава изображается прямой г, причем Св, т—это изобарный потенциал чистого твердого компонента В. [c.169]

    Так как изобарное повышение температуры вызывает рост Кр, то происходит увеличение а. На рис. 26 зависимость а от Т показана при разных давлениях (линии оё. я ос Р = [c.73]

Рис. 91. Зависимость теплового эффекта реакции и изменения изобарного потенциала реакции от температуры в области низких температур. Рис. 91. <a href="/info/939637">Зависимость теплового эффекта реакции</a> и <a href="/info/1489425">изменения изобарного потенциала реакции</a> от температуры в <a href="/info/1117425">области низких</a> температур.
    НИИ, для расчетов указанных процессов используют изобарные температурные кривые, дающие зависимость температур кипения смесей от составов равновесных паровой и жидкой фаз. [c.239]

    Кривая АВ В В, отвечающая зависимости температуры системы от состава паровой фазы, называется изобарной кривой конденсации паров (линией конденсации или насыщенных паров). [c.69]

    Так как изобарное повышение температуры вызывает рост Кру то происходит увеличение а. На рис. 31 зависимость а от Т показана при разных давлениях (линии ос/ и ОС, р = 1 атм). Чем прочнее молекулы вещества, тем сильнее влияет температура на подобного рода равновесия. [c.81]

    Рассмотрим изотермы удельных изобарных потенциалов расплавов двойной системы В—А для разных температур. Установим, какие фазы находятся в равновесии при той или иной температуре, и построим диаграмму зависимости температур от состава системы, т. е. диаграмму состояния. [c.86]

    Метод звезды заключается в определении формы отрезков ЕР, В1 и МН трех изобар температур кипения, лежащих неподалеку от точки Аг, представляющей ожидаемый состав тройного положительного гомоазеотропа А, В, Н). Если эти отрезки выбраны правильно, то два из них будут характеризоваться наличием минимума температуры кипения ф1 и ЕР). Состав тройного азеотропа можно затем найти интерполяцией. В зависимости от степени кривизны изобарной поверхности температур кипения состав азеотропа может быть определен, таким образом, с относительно высокой точностью. [c.70]

    В случае реальных газов или газо-жидко стных систем для более точного вычисления производных целесообразно использовать экспериментальные данные по зависимости давления и объема газа от температуры. При отсутствии данных изобарная теплоемкости Ср может быть определена из термодинамического соотношения [22, 36, 39, 67, 71]  [c.30]

    Диаграммы и таблицы по данным этих взаимосвязей представлены на рис. 6—16 и в табл. 1—6 приложения. Подробный анализ диаграммы Ср, с — Т, р приводится в работе [10]. Поэтому рассмотрим остальные взаимосвязи различных сочетаний изобарной и изохорной теплоемкостей в зависимости от проявления приведенных внешних параметров пластовой системы (давления и температуры), а именно  [c.47]

Рис. 19. Зависимость изобарного потенциала Д0° (ккал моль) некоторых реакций от температуры Т( К), Рис. 19. <a href="/info/916653">Зависимость изобарного потенциала</a> Д0° (ккал моль) <a href="/info/939174">некоторых реакций</a> от температуры Т( К),
    Зависимость изменения стандартного изобарно-изотермического потенциала АОт от температуры Т выражается уравнением [c.21]

    Изобарный коэффициент расширения at реактивных топлив в зависимости от температуры 226 [c.4]

    Плотность р, кинематическая вязкость v и изобарный коэффициент расширения а< некоторых зарубежных топлив в зависимости от температуры 226 [c.4]

    ИЗОБАРНЫЙ КОЭФФИЦИЕНТ РАСШИРЕНИЯ а, РЕАКТИВНЫХ ТОПЛИВ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ [c.226]

    Связь между повышением температуры кипения и понижением температуры отвердевания можно показать и с помощью рис. 49. На нем представлены четыре кривые, изображающие температурную зависимость изобарного потенциала четырех фаз — твердого, жидкого и газообразного растворителя и раствора. Точка а отвечает кипению, точка о — отвердеванию растворителя точки Ь и й — соответственно кипению и отвердеванию раствора. В каждой из этих точек в соответствии с общими критериями равновесия соблюдается равенство изобарных потенциалов сосуществующих фаз. [c.155]


    Теоретический подход к определению облика диаграммы плавкости возможен на основании анализа зависимости удельного изобарного потенциала раствора от его состава (рис. 74). Для механической смеси изотерма О = /(с) будет прямой (линия /) для раствора она криволинейна с выпуклостью к оси состава (линия 2), так как образование раствора сопровождается убылью (5-потенциала. Если же, на-г. ример, при данной температуре вещества смешиваются ограниченно, т. е. имеется область сосуществования двух взаимно насыщенных растворов (см. рис. 42), то на О—с-кри-вой появится участок, обращенный выпуклостью вверх (линия 3 на рис. 74) абсциссы точек с и с1 соответствуют концентрациям этих растворов. [c.225]

Рис. 76. Построение диаграммы плавкости по зависимости удельного изобарного потенциала от состава при разных температурах (схема) Рис. 76. <a href="/info/1229946">Построение диаграммы плавкости</a> по зависимости <a href="/info/365449">удельного изобарного потенциала</a> от состава при <a href="/info/50238">разных температурах</a> (схема)
Рис. 79. Зависимость стандартного изобарного потенциала Д0° (ккал моль) образования некоторых соединений кальция от температуры Т К) Рис. 79. <a href="/info/939147">Зависимость стандартного изобарного потенциала</a> Д0° (ккал моль) <a href="/info/1470019">образования некоторых соединений</a> кальция от температуры Т К)
Рис. 84, Зависимость стандартного изобарного потенциала Д<3° (ккал моль) образования оксидов азота от температуры Т ( К) Рис. 84, <a href="/info/939147">Зависимость стандартного изобарного потенциала</a> Д<3° (ккал моль) <a href="/info/110298">образования оксидов азота</a> от температуры Т ( К)
    Однако с ростом температуры ввиду разной зависимости изобарно-изотермического потенциала от температуры порядок изменяется на обратный  [c.36]

    Изобарные температурные кривые. Каждой равновесной системе при заданном давлении я отвечает определенная температура. Поскольку процессы перегонки и ректификации обычно происходят при практически постоянном или малоизменяю-щемся давлении, для расчетов указанных процессов используют изобарные температурные кривые, дающие зависимость температур кипения смесей от составов равновесных паровой и жидкой фаз. [c.215]

    Теплоемкость — количество тепла, необходимое для нагревания единицы массы вещества на один градус. Различают истинную и среднюю (С) теплоемкости, соответствующие либо бесконечно малому изменению или разности температур. В зависимости от способа выражения состава вещества различают массовую, польную и объемную теплоемкости. Чаще применяют массовую теплоемкость, единица ее измерения в СИ — Джоуль на килог — рамм — Кельвин (Дж/кг К), допускаются также кратные единицы — кДж/кг К, МДж/кг К. Различают также изобарную теплоемкость (при постоянном давлении — С ) и изохорную теплоемкость (при постоянном объеме — С ). [c.84]

    Несмотря на целесообразность широкого использования экспериментальных методов, потребности в данных по теплоемкостям значительно больше, чем возможности их определения опытным путем для целей разработки нефтяных и газовых месторождений. Аргументацией к этому может служить следующее. Известно, что существующие экспериментальные установки (калориметры различных модификаций и типов) предназначены для изучения температурной зависимости изобарной теплоемкости, при котором давление в системе должно быть равно атмосферному и не превышать 6—8 кГ см [31, 61, 62, 68, 87]. В связи с этим нефть и нефтегазовые смеси с различным весовым содержанием газа в фильтрующемся потоке, находящиеся в пласте под давлением 400—600 кГ1см и при температуре 35—150°С, не могут быть исследованы в су- [c.42]

    Использование термодинамических данных. Основным критерием оценки возможности осуществления какой-либо реакции с точки зрения термодинамики является изменение свободной энергии (изобарного потенциала) AG или стандартной свободной энергии AG298 к изучается или зависимость ее от температуры ДО = ф(Т ), или определяется значение температуры, при которой AG = О, т. е. когда реакция может протекать с одинаковой легкостью в обоих направлениях. [c.12]

    В табл. 3.4 приведены значения изобарной теплоемкости реактивных топлив, полученных ТЦ В/О Нефтехим и ЦИАМ по системе АВЕСТА. Следует иметь в виду, что теплоемкость любого топлива (если это не индивидуальный углеводород) не остается строго постоянной величиной из-за различий в составе топлива. Однако влиянием изменений химического и фракционного состава на теплоемкость в пределах одного сорта топлива можно пренебрегать, так как расхождения значений обычно меньше экспериментальной ошибки. В зависимости от диапазона температур и давлений изобарная теплоемкость экспериментально определяется с погрешностью (0,5—3,0)%. [c.98]

    В случае полярных растворителей методики расчета перераспределения компонентов между фазами дансе для отдельных конкретных систем пока не разработаны. Менсду тем использование энергии Гиббса в уравнении параметра растворимости удобно в том отношении, что в изобарно-изотермический потенциал входят лишь две функции— тепловая и энтропийная. Не требуется отдельно искать математическую зависимость степени ассоциации молекул растворителя при разных температурах процесса, так как этот эффект учитывается изменением теплоты смешения. [c.247]

    В зависимости от условий, в которых производят нагрев, различают несколько видов теплоемкостей, из которых мы остановимся здесь на двух главнейших. В случае нагревания вещества при постоянном объеме теплоемкость v, которой оно обладает, называется изохорной теплоемкостью (ее называют также теплоемкостью при постоянном объеме). В этом случае вся сообщаемая веществу теплота увеличивает его внутреннюю энергию, так как при нагревании без изменения объема не производится внешней работы. Теплоемкость Ср, которой обладает тело, нагреваемое при постоянном давлении, называется изобарной теплоемкостью (ее называют также теплоемкостью при постоянном давлении). В этих условиях нагрева, наряду с расходом теплоты на увеличение внутренней энергии вещества, производится еще и работа против внешнего давления вследствие расширения вещества при повышении температуры. Эта работа требует затраты дополнительного количества теплоты, поэтому изобарная теплоемкость всегда больше тохорной. [c.102]

    Термодинамическая возможность этих реакций иллюстрируется графиком температурной зависимости изобарно-изотермического потенциала этих реакций (рис. 6). Нетрудно видеть, что примерно до 600 К изменение ДС° больше нуля, и, следовательно, расшеп-лецие парафинов термодинамически невозможно, а может происходить лишь алкилирование. При более высокой температуре положение меняется на обратное, причем при 800 К и выше расщепление является уже практически необратимым процессом. Суще-стзенно, что н-декан и вообще высшие парафины более склонны к расщеплению, чем низшие (кривая 4 лежит ниже кривой 3). [c.36]


Смотреть страницы где упоминается термин Изобарная зависимость от температуры: [c.58]    [c.24]    [c.295]    [c.112]    [c.387]    [c.155]    [c.145]   
Основы физической и коллоидной химии Издание 3 (1964) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Изобарный температуры

зависимость от температур



© 2025 chem21.info Реклама на сайте