Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды карта

    Для лучшего разделения соединений с близкими значениями R , а также для увеличения часто проводят хроматографирование в нескольких (обычно двух) системах растворителей, пропуская второй растворитель в том же направлении, что и первый. Это приводит к уплощению пятен разделяемых соединений в направлении, перпендикулярном пропускаемому растворителю, и способствует их лучшему разделению. Более полное разделение аминокислот и пептидов достигается при двухмерной хроматографии (второй растворитель пропускают в направлении, перпендикулярном первому) или при сочетании хроматографии (одно направление) и электрофореза (второе взаимно перпендикулярное направление). Последний метод носит название метода пептидных карт или отпечатка пальцев . [c.126]


    Полученные гидролизаты анализируют различными методами гель-хроматографией, ионообменной хроматографией, электрофорезом и хроматографией на бумаге и в тонком слое, электрофорезом в полиакриламидном геле, методом пептидных карт на бумаге или в тонком слое (в одном направлении пептиды подвергаются электрофорезу, в другом — хроматографии) и др. При этом пептиды, содержащие остат ки аргинина, триптофана и гистидина, могут быть открыты с помощью специфических цветных реакций (с. 129). Выбор метода диктуется величиной (молекулярной массой) и характером пептидов гидролизата. [c.139]

    Высокий процент в большинстве белков лизина и аргинина приводит при гидролизе трипсином к появлению сравнительно большого числа относительно мелких пептидов. Их анализируют методом пептидных карт на бумаге или в тонком слое, а также с помощью хроматографии на колонках и электрофорезом. [c.140]

    Рассмотрим теперь метод пептидных карт. Его первый этап состоит в разрыве дисульфидных связей, далее белок денатурируют и расщепляют ферментами, например трипсином или пепсином. В результате получается набор пептидов, размер и аминокислотный состав которых характерен для каждого отдельного белка. Смесь пептидов наносят на лист хроматографической бумаги и проводят в одном направлении хроматографию, а в другом — электрофорез. Пептиды локализуются в виде отдельных пятен, образуя характерную картину ( отпечатки пальцев ), Метод пептидных карт особенно полезен для выявления малых [c.167]

    Для рибонуклеазы S пространственная структура определена с разрешением 0,35 нм [220, 221]. Результаты совпадают с моделью Карты. Найдено, что около половины S-пептида находится в виде о -спирали. Вся молекула содержит 15% спиральной и -75% /3-структуры. [c.403]

    Метод составления пептидных карт, получивший образное название метод отпечатков пальцев , используется при определении сходства или различия гомологичных белков по первичной структуре. Белок инкубируют с каким-либо протеолитическим ферментом. Часто порции белка инкубируют как с пепсином, так и с трипсином. При этом вследствие гидролиза строго определенных пептидных связей образуется смесь коротких пептидов, легко разделяемых с помощью хроматографии в одном направлении и электрофореза-в другом, под углом 90° от первого (пептидная карта). [c.56]

    Область применения. Качественное и полуколичественное определение аминокислот, получение пептидных карт (метод отпечатков пальцев), микропрепаративное разделение и очистка пептидов. [c.187]


Рис. 10. Разделение пептидов методом пептидных карт. Рис. 10. <a href="/info/155768">Разделение пептидов методом</a> пептидных карт.
    Какая же получается картина, если мы оцениваем парци--альные заряды из дипольных моментов связей, определяемых из опытных дипольных моментов по аддитивным схемам Скорее всего монопольное приближение дает завышенную электростатическую энергию , однако насколько — это зависит от рассматриваемой конформации, т. е. от взаимного расположения диполей и зарядов. Заранее можно сказать, что монопольное приближение дает сильно завышенную энергию притяжения для области, в которой находится р-структу-ра (см. приведенные далее конформационные карты), поскольку в этой области расположение зарядов и диполей соответствует ориентации I взаимное расположение диполей в а-спирали ближе к ориентации II. Это обстоятельство затруд-ляет оценку относительной стабильности двух наиболее выгодных конформаций пептидов. [c.107]

Рис. 5. Конформационная карта глицинового дипептида. Полностью разрешенные конформации попадают в области, ограниченные жирной линией, частично разрешенные — пунктирной линией. Кружки соответствуют конформациям, которые были найдены в малых незамкнутых пептидах, содержащих Гли, черные точки указывают конформации Гли в некоторых циклических пептидах [19] Рис. 5. <a href="/info/98968">Конформационная карта</a> глицинового дипептида. Полностью разрешенные конформации попадают в области, ограниченные жирной линией, частично разрешенные — пунктирной линией. Кружки соответствуют конформациям, которые были найдены в малых незамкнутых пептидах, содержащих Гли, <a href="/info/854105">черные точки</a> указывают конформации Гли в <a href="/info/656065">некоторых циклических</a> пептидах [19]
    Представляют интерес расчеты конформаций олиго- я полинуклеотидов с потенциальными функциями. В отличие от пептидов, двумерные конформационные карты которых позволяют найти положение и форму минимумов для мономерной единицы, при решении подобных задач для нуклеотидов мы сразу же сталкиваемся с проблемой многих минимумов, и решить ее, вероятно, будет не просто. [c.181]

Рис. 6-8. Пептидная карта, полученная после расщепления нормального гемоглобина человека трипсином. Каждое пятно содержит один из пептидов. Чтобы получить такую двумерную карту, смесь пептидов наносят на лист бумаги квадратной формы, проводят электрофорез в одном направлении, параллельном одной из сторон квадрата, после чего бумагу высушивают, а затем проводят хроматографическое разделение пептидов в другом направлении, перпендикулярном первому. Ни один из этих двух процессов в отдельности не позволяет разделить пептиды полностью, однако последовательное их осуществление оказывается очень эффективным способом разделения сложных пептидных смесей. Рис. 6-8. <a href="/info/101227">Пептидная карта</a>, <a href="/info/1518405">полученная после</a> <a href="/info/1668729">расщепления нормального</a> <a href="/info/187052">гемоглобина человека</a> трипсином. Каждое пятно содержит один из пептидов. Чтобы получить такую <a href="/info/573867">двумерную карту</a>, <a href="/info/139174">смесь пептидов</a> наносят на <a href="/info/675898">лист бумаги</a> квадратной формы, проводят электрофорез в одном направлении, параллельном одной из сторон квадрата, после чего бумагу высушивают, а затем проводят <a href="/info/1094907">хроматографическое разделение пептидов</a> в <a href="/info/1822081">другом направлении</a>, перпендикулярном первому. Ни один из этих <a href="/info/1696521">двух</a> процессов в отдельности не позволяет разделить пептиды полностью, однако последовательное их осуществление оказывается очень <a href="/info/1566181">эффективным способом</a> <a href="/info/255897">разделения сложных</a> пептидных смесей.
Рис. 8-22. Пептидные карты трипсиновых пептидов гемоглобина А и гемоглобина 5. На карте гемоглобина 8 смещено положение всего одного пептида (показанного красным цветом), содержащего генетически измененную аминокислоту. Рис. 8-22. <a href="/info/101227">Пептидные карты</a> трипсиновых <a href="/info/573783">пептидов гемоглобина</a> А и гемоглобина 5. На <a href="/info/101228">карте гемоглобина</a> 8 смещено положение всего одного пептида (показанного <a href="/info/1011214">красным цветом</a>), содержащего <a href="/info/1338949">генетически измененную</a> аминокислоту.
    Идентификация мутантного гемоглобина. Препарат мутантного гемоглобина подвергли трипсиновому гидролизу, а затем получили пептидную карту. При этом выяснилось, что мутантный гемоглобин отличается от нормального гемоглобина А тем, что содержит в одном из пептидов вместо остатка аспарагина остаток лизина. [c.225]

    Пептидная карта (фингерпринт). Характерное для данного белка двумерное расположение пептидов, образующихся при его частичном гидролизе. [c.1016]

    Методика получения пептидных карт или отпечатков пальцев очень полезна при определении идентичности полипептидных цепей. Согласно этой методике, белок обрабатывают трипсином, который избирательно гидролизует пептидные связи, образованные карбоксильными группами основных аминокислот, аргинина и лизина. Образующаяся смесь пептидов разделяется с помощью хроматографии и электрофореза. Эквивалентный вес полипептидной цепи рассчитывают по количеству аргинина и лизина в белке и числу разных пептидов, получаемых при триптическом гидролизе. Теоретически общее число пептидов должно равняться сумме числа остатков аргинина и лизина плюс один, [c.401]


    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]

    В наши дни стало привычным просматривать целиком всю область возможных значений ф и а з, используя вычислительные машины. Расчеты конфор мации пептидной группы выполнил Рамачандран. Результаты такого анализа часто представляют в виде графиков зависимости ф от гр (графиков Рамачандрана, или конформационных карт), на которых обводят рамками области возможных комбинаций двух углов. Конформационные карты пептидов (рис. 2-5) показывают, что число возможных комбинаций торсионных углов довольно велико. Существенная часть этих комби- [c.89]

    Ген, нередко встречающийся у лиц африканского происхождения, вызывает (в случае гомозиготности) тяжелое, часто летальное заболевание, получившее название серповидноклеточная анемия . В 1949 г. Полинг и Итано с сотрудниками обнаружили, что гемоглобин больных серповидноклеточной анемией имеет необычно высокую электрофоретическую подвижностьб. Позднее, в 1957 г., Ингрем разработал метод пептидных карт (гл. 2, разд. 3.2, рис. 4-20) и применил его для исследования гемоглобина. Он расщепил молекулу гемоглобина трипсином на 15 пептидов и разделил полученную смесь с помощью электрофореза и хроматографии. Ему удалось показать, что аномалия, характерная для серповидноклеточного гемоглобина (гемоглобина 5), локализована в Р-цепи (в шестом положении) (рис. 4-17). Глутаминовая кислота, находящаяся в этом положении в нормальном гемоглобине, оказалась замещенной в гемоглобине 5 на валин. Это [c.314]

    Основные цепи, включающие остатки в L-форме, всегда проигрывают структурам того же шейпа с остатками в R- и В-формах по ближним взаимодействиям. Но это не единственная их слабость. На конформационных картах ф- 1/ монопептидов (см. рис. 11.10, 6) область L не только на -1,5 ккал/моль выше областей R и В, но и значительно уже. Следовательно, однотипные основные цепи с R- и В-формами остатков всегда энтропийно предпочтительнее основных цепей с L-формами остатков. Последние имеют более узкий диапазон разрешенных значений углов (ф, V) и, следовательно, меньшую возможность для образования компактных структур. Отмеченные соображения объясняют редкую встречаемость L-форм у остатков (за исключением Gly) в белках (см. рис. 11.23). Эти же соображения служат обоснованием одного методического приема, существенно упрощающего поиск низкоэнергетических оптимальных конформаций пептидов. У каждого шейпа имеется лишь одна форма основной цепи с остатками в R- и В-областях (точнее, их две, но они отличаются лишь формой С-концевого остатка, и поэтому, как уже отмечалось, 1фактически изоэнергетичны). [c.230]

    Метод статнстической информации. Это целое семейство процедур, в которых для отбора конформаций, служащих исходными приближениями в последующем расчете, используется разного рода вероятностная информация. Ее источником может быть банк данных белковых структур, статистическое распределение остатков на конформационных картах усредненная предпочтительность парных остаток-остаточных контактов или алгоритмы предсказаний вторичных структур [210-216]. Очевидно, данные такого рода ориентировочны и могут скорее ввести в заблуждение, чем помочь в решении структурной проблемы пептидов и тем более белков. Конформационные возможности каждого из них определяются не статистикой, а определенной и всегда уникальной аминокислотной последовательностью. Показательно в этом отношении исследование М. Ламберта и Г. Шераги [210-212] панкреатического полипептида из 36 остатков. В расчет его структуры в качестве дополнительной вероятностной информации привносятся данные о распределении значений двугранных углов основной цепи в четырех областях конформационной карты ф-ц/ и распределении конформационных состояний трипептидных сегментов на нерегулярных участках трехмерных структур белков, изученных кристаллографически. Набор исходных для оптими- [c.244]

    Ферментативные методы гидролиза основаны на избирательности действия иротеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин-аргинина и лизина, хпмотрипсин-триптофана, тирозина и фенилаланина. Ряд других ферментов, например папаин, субтилизин, проназа и другие бактериальные протеиназы, также используется для неполного гидролиза белков. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах. [c.56]

    Выбор фильтровальной бумаги. Для качественного и полу-количественного хроматографического анализа обычно используют бумагу Шляйхер-Шуль 20436 и Ватман 1. Микропрепаративное выделение пептидов лучше всего проводить на бумаге Ватман 3 и Ватман 3 ММ. Наиболее четкая картина пептидных карт получается на бумаге Ватман 3 ММ. [c.188]

    Реализуемая в данных условиях конформация белка и пептида определяется суммой всех перечисленных взаимодействий и является энергетически наиболее выгодной, что и отражается попаданием соответствующих углов в разрешенные области коиформа-циоиных карт Рамачандрана . [c.91]

    Расчетами конформаций пептидов занимались четыре группы исследователей — группы Рамачандрана, Ликвори, Флори и Шерага. Достижения каждого из исследователей можно кратко охарактеризовать следующим образом. Рамачандран и его сотрудники первыми начали конформационные расчеты пептидов [1, 2] и нашли разрешенные и запрещенные области на конформационных картах 1[3, 4] Ликвори [5] первым применил атом — атом потенциалы для построения конформационных карт Флори [6, 7] показал важность учета электростатических взаимодействий для предсказания относительной стабильности различных конформаций и разработал метод расчета гибкости модельных полипептидов и сополимеров наконец, Шерага интенсивно исследовал конформации дипептидов и полипептидов методом жестких сфер [8—12] и с по- [c.93]

    В предыдущем обзоре были обсуждены возможности, связанные с использованием потенциалов невалентных взаимодействий, и на рис. 10 (стр. 29) приведены два возможных типа потенциалов. Прямоугольный потенциал, соответствующий методу жестких сфер, дает информацию только р разрешенных и запрещенных областях в пространстве независимых параметров, описывающих геометрию молекулы. Ни точные положения минимумов, ни относительные стабильности различных конформаций не даются этими потенциалами, однако грубое представление о форме потенциальных ям все же удается получить. Надо сказать, что метод жестких сфер, вообще говоря, весьма мало дает для малых перегруженных молекул, не обладающих внутренним вращением [36], однако для пептидов, в которых коиформационная свобода относительно велика, он дал возможность объяснить некоторые интересные факты. В частности, в запрещенные области конформационных карт (ф, ф) не должны попадать (и действительно довольно редко попадают) точки, соответствующие реальным полипептидам и белкам. [c.100]

    КАРТА ж, пептйдная. Электрофоретическая или хроматографическая карта двумерного распределения пептидов, образовавшихся на пластинках сорбентов при гидролизе белков используется для структурного и/или сравнительного анализа белков. [c.172]

    Известен также метод пептидных карт, позволяющий устанавливать незначительные различия в первичной структуре родственных Б. Для этого Б. частично гидролизуют специфич. протеолитич. ферментами (особенно удобен трипсин, разрывающий пептидные связи у карбонильных п)упп остатков лизина и аргинина), затем пептиды каждого Б pa дeляют электрофорезом и распределительной хроматографией При сравнении полученных пептидных карт различных Б оказывается, что все идентичные пептиды располагаются в определенных (одних и тех же) местах, за исключением пептидов, по к-рым Б отличаются друг от друга Этим методом впервые обнаружено, что при замене одного остатка глутаминовой к-ты в молекуле гемоглобина на остаток валина образуется серповидноклеточный гемоглобин, встречающийся при одном из видов анемии. Методом пептидных карт изучают генетич. аспекты эвотюционных изменений Б. и выявляют изменения Б. при различных заболеваниях. [c.121]


Смотреть страницы где упоминается термин Пептиды карта: [c.490]    [c.316]    [c.223]    [c.304]    [c.389]    [c.559]    [c.560]    [c.563]    [c.92]    [c.54]    [c.76]    [c.118]    [c.127]    [c.124]    [c.370]    [c.149]    [c.217]    [c.359]    [c.402]   
Методы химии белков (1965) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Мак-Карти

карты



© 2025 chem21.info Реклама на сайте