Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа равновесия влияние температуры

    В логарифмических координатах закон Рауля представляется прямыми линиями с коэффициентами пропорциональности, равными единице и проходящими через значение давления, аналогичного давлению насыщенного пара при принятой температуре. Для пропана и бутанов при давлениях ниже давления насыщенного пара экспериментальные константы равновесия сходятся в одной точке при К=1. Так, для пропана в метане при давлении 70 кГ/см и температуре 49°С значение действительной константы равновесия равно 0,6, а по закону Рауля — 0,24. Подобный характер влияния давления подчеркивает, что константы равновесия изменяются в зависимости от состава фаз и значительно отклоняются от закона Рауля. Температура 49° С [c.88]


    По зависимости констант равновесия от температуры предскажите влияние температуры на равновесие и знак изменения энтальпии (теплового эффекта) реакции. По уравнению (2) рассчитайте AG при каждой температуре Т. Воспользовавшись двумя значениями ДС (или константы равновесия) при двух температурах для интересующего вас интервала температур Т — 72, составьте систему двух уравнений с двумя неизвестными  [c.116]

    Направление смещения равновесия в результате изменения температуры определяется знаком теплового эффекта. Степень смещения равновесия определяется в е л и ч и н о й теплового эффекта чем больше ДЯ, тем значительное влияние температуры наоборот, если ДЯ близко к нулю, то температура практически не влияет на равновесие. Хотя, как уже отмечалось, тепловые эффекты с температурой меняются незначительно, но для химического равновесия в очень широком интервале температур следует принимать во внимание возможное изменение ДЯ. Если ио абсолютной величине значение ДЯ невелико, то может произойти и перемена знака ДЯ. Это будет означать, что изменение температуры вызовет изменение знака температурного коэффициента константы равновесия. [c.72]

    Энтропия используется, кроме того, для определения влияния температуры на энергию Гиббса и ее изменения в результате реакции, а изменение энтальпии — для определения влияния температуры на константу равновесия, так как [c.22]

    Квантовые выходы, естественно, определяются соотнощениями (3.21). Интересно, что и при радикальном механизме при фотохимическом равновесии (Шд=Шт=0) по концентрациям продуктов можно определить константы- скоростей элементарных реакций, используя соотношения (3.22), где 71=йкц/йкт и у2= рц/ рт- Особенностью радикального механизма является ощутимое влияние температуры на скорость химических превращений, так как энергии активации для всех элементарных реакций в этом случае значительны. [c.77]

    Влияние температуры на химическое равновесие. Влияние температуры на константу равновесия можно рассчитать по уравнению Гиббса— Гельмгольца, выведенному ранее (стр. 126) [c.236]

    Влияние температуры и давления на равновесие реакции дегидрирования бутенов до бутадиена-1,3 аналогично, причем давление влияет на эту стадию процесса значительно больше. Зависимость константы равновесия от температуры выражается уравнением  [c.89]

    Выясним теперь, что предсказывает принцип Ле Шателье относительно влияния температуры на константу равновесия. При подведении теплоты к реагирующей системе ее температура повышается. Воздействие, связанное с добавлением в систему теплоты, может быть ослаблено, если равновесие сместится в направлении, соответствующем поглощению теплоты. Если реакция эндотермическая, ее константа равновесия должна увеличиваться с ростом температуры если же реакция экзотермическая, ее константа равновесия должна уменьшаться при повышении температуры. [c.108]


    Температура. При поликонденсации в расплаве, так же как и Тфи любой обратимой реакции, температура оказывает двоякое влияние с повышением температуры увеличивается скорость поликонденсации и изменяется константа равновесия. Влияние температуры на скорость процесса поликонденсации может быть выражено через энергию активации. Энергии активации процессов поликонденсации в расплаве лежат в пределах, характерных для многих химических реакций монофункциональных соединений. [c.98]

    Какое влияние на условия равновесия химической реакции оказывают разрыв связей и повышение неупорядоченности системы Если бы единственным заслуживающим внимания фактором была только энергия связей, какой была бы константа равновесия для диссоциации молекул водорода на атомы Если бы единственным важным фактором была только энтропия, какой была бы константа равновесия для диссоциации водорода Используя свои ответы на эти вопросы и соотношение между С, Я и 5, объясните, почему диссоциация газообразного водорода сильнее выражена при высоких температурах. [c.114]

    Влияние температуры на химическое равновесие. Изменение константы равновесия с температурой можно найти из уравнения изотермы -.л [c.309]

    Исследовался характер деформации рассчитанных по разработанному алгоритму кривых отклика системы при вариации константы равновесия и коэффициента массообмена кт. Константа равновесия оказывает существенное влияние на характер переходного процесса системы. С ростом константы равновесия наблюдается резкое возрастание коэффициента усиления и уменьшение постоянной времени системы. Например, для системы аммиак— вода изменение температуры на 2° приводит к изменению константы равновесия на 9%, что, в свою очередь, вызывает такую деформацию кривой переходного процесса, при которой коэффициент усиления возрастает на 10%, а постоянная времени уменьшается на 11% от начального значения. [c.424]

    Понижение температуры и связанное с этим уменьшение степени ионизации V d" должно привести к уменьшению отношения iVs]/[V d"], а потому и электропроводности. Это демонстрируется рис. 87, где результаты расчета сопоставлены с экспериментом. Из рисунка видно, что понижение температуры прокаливания (отжига) приводит к расширению области давления паров кадмия (серы), в которой dS ведет себя как изолятор. Менее резкая зависимость п от Г в эксперименте [82] объясняется, по-видимому, невозможностью полностью заморозить высокотемпературное равновесие. Влияние температуры на положение границ перехода от одного механизма компенсации к другому вытекает из того обстоятельства, что константы равновесия, входящие в уравнения (VI.70), (VI.73) и (VI.90), являются функцией Т. [c.201]

    Непосредственный эксперимент, позволяющий оценить константу равновесия той или иной реакции, также дает возможность вычислить ДС. Если при этом оказывается, что зависимость константы равновесия от температуры изучена плохо, то для расчета ДО пользуются уравнением, позволяющим приблизительно оценить влияние температуры на величину АО [c.51]

    Функцией (0°т — Нт)1т удобно пользоваться для определения а также для расчетов влияния температуры на АОт и на константу равновесия. Однако она не дает возможности непосредственно определять АЯг, и А5г реакции, а имея в распоряжении данные для Нт — Яг, и 5г — 5г можно решить и ту и другую задачи. [c.64]

    Употребление стандартных значений допускает и косвенные расчеты. Если нет данных, нужных для исследования какой-либо реакции, можно скомбинировать другие реакции, подобно тому как это делается при расчете констант равновесия. Непосредственный эксперимент, позволяющий оценить константу равновесия той или иной реакции, также дает возможность вычислить АС. Если при этом оказывается, что зависимость константы равновесия от температуры изучена плохо, то для расчета АС пользуются уравнением, позволяющим приблизительно оценить влияние температуры на величину АС  [c.142]

    Влияние на константу равновесия температуры. Константа химического равновесия зависит от природы реагентов и от температуры. Она сзязана о изменением стандартной энергии Гиббса химической реакцти ДС уравнением [c.179]

    Он дал классификацию реакций по их порядку (по числу молекул взаимодействующих веществ) и различал реакции первого порядка (мономолекуля рные), которые могут протекать в изолированной молекуле (реакция разложения или превращения изомеров). В бимолекулярных реакциях (второго порядка) необходимо принимать условие соударения двух молекул. Рассматривая влияние температуры на ход реакции, Я. Вант-Гофф пришел к уравнениям, связывающим изменения константы равновесия от температуры и теплового эффекта (уравнения изобары и изохоры реакций). Дальнейшее развитие химической кинетики уже непосредственно смыкается с успехами физической химии новейшего времени. [c.172]

    Из уравнения (3.75) следует, что тепловому эффекту в 5 кДж/моль соответствует изменение р/С на 0,03, при изменении температуры на 10°. Тепловой эффект диссоциации многих слабых кислот и оснований в водных растворах находится в пределах от —12,0 до 12,0 кДж/моль, что соответствует изменению рЛ примерно на 0,071 единицы при изменении температуры на 10°. Это сравнительно небольшое число, поэтому во многих химикоаналитических расчетах кислотно-основных равновесий влиянием температуры пренебрегают. Наибольшее влияние температура оказывает на процессы типа (3.44), связанные с диссоциацией воды на ионы. Процесс НОН = Н+ + 0Н существенно эндо-термичен (АЯ = 56,1 кДж/моль), поэтому с увеличением температуры константы равновесия таких процессов заметно увеличиваются. [c.61]


    Влияние температуры на равновесие. В соответствии с принципом Ле Шателье, нагреваиие вызывает смещение равновесия в сторону того из двух встречных процессов, протекание которого сопровождается поглощением теплоты, иначе говоря, повышение температуры вызывает возрастание константы равновесия эндотермического процесса. Естественно, что понижение температуры приводит к противоположному результату равновесие смещается в сторону того процесса, протекание которого сопровожда- [c.198]

    Оба эти механизма описываются одинаковым кинетическим уравнением только до тех пор, пока диссоциация Ij находится в состоянии термического равновесия и число имеющихся в наличии атомов иода определяется термической константой равновесия согласно уравнению (22-23). При более высоких температурах диссоциация усиливается, и это дает такой же результат, как и повыщение константы скорости бимолекулярной реакции. Дж. Салливэн рещил проверить обе теории, изменяя концентрацию атомов иода по сравнению с нормальной, соответствующей термической диссоциации Ij. Он осуществил это при помощи ртутной лампы, пары которой излучают свет с длиной волны 578 нм, вызывающий диссоциацию Ij. Этот свет не должен оказывать на реакцию заметного влияния, если она протекает по бимолекулярному механизму, лишь несколько понижая концентрацию Ij. Но если реакция действительно вклкэчает стадию тримолекулярных столкновений с атомами иода, скорость реакции должна возрастать с интенсивностью облучающего света, поскольку при этом образуется больше атомов иода. [c.381]

    Влияние температуры на константу равновесия [c.65]

    Лекция 9. Влияние дисперсносги на реакционную способность, на растворимооть, на константу равновесия. Влияние дисперснооги на температуру фазового перехода. Молекулярно-кинетические свой-сгва. [c.217]

    Влияние температуры на выходы ацетилена и этилена уже обсуждалось в разделе Равновесие . Сторч [87] пытался связать конверсию до ацетилена и этилена со средним парциальным давлением метана произведение среднего парциального давления метана на величину конверсии до ацетилена и этилена представлено в виде константы, обладающей размерностью давления и являющейся функцией температуры. Эта константа бьиЕа рассчитана для данных, приведенных в табл, 4. Было рассчитано среднее парциальное давление метана рсщ при условии, что разло-жепие метапа происходит согласно уравнепию (3)  [c.68]

    Числовые значения константы К при поликонде Нсации ш-аминоэнан-товой кислоты при температуре 258 °С составляют 375 и 300 при содержании воды в системе 1 моль и 3 моля на 1 моль аминокислоты соответственно [44]. Наблюдаемую зависимость константы равновесия от содержания воды в системе авторы объясняют по-разному. Так, Вилот [45] считает, что вместо концентраций реагирующих мономеров необходимо использовать их активности. Хермане [44] также ссылается на влияние среды, обусловленное участием в реакции ионизированных молекул. Юмото [46] связывает это с неодинаковой реакционной способностью макромолекул разной длины. Возможно, неоднозначность К является причиной неоднозначности литературных данных по изменению констант равновесия от температуры. Согласно приведенным выше данным [29, 30], константа равновесия увеличивается [c.46]

    Из приведенных данных видно, что не следует пытаться получать этилбензол из толуола, при диспропорциопировании последнего можно в ощутимых количествах получить только ксилолы, в составе которых будет преобладать л1-ксилол. Из-за слабого влияния температуры на равновесный состав выбор условий диспропорционирования определяется только кинетическими факторами. Если при диспропорционировании будет получен один или два изомерных ксилола, то следует, используя данные о константах равновесия (см. табл. 51), выполнить термодинамический расчет для реально получаемых веществ. В большинстве же реальных ситуаций получают три изомерных ксилола и можно использовать данные табл. 52. [c.226]

    Как, исходя нз нрннцина /1е Шателье, предвидеть влияние температуры ] а константу равновесия  [c.266]

    Принцип Ле Шателье гласит, что если на систему в состоянии равновесия оказывается внешнее воздействие, положение равновесия (т.е. количественное соотношение между реагентами и продуктами) смещается в таком направлении, чтобы свести к минимуму влияние этого воздействия. Это означает, что для эндотермической реакции (идущей с поглощением тепла) Кравн увеличивается при повышении температуры, поскольку дальнейшее продвижение реакции приводит к частично.му поглощению подводимого тепла. По той же причине для экзотермической реакции (идущей с выделением тепла) охлаждение приводит к увеличению Кра . Хотя константа равновесия Кр в,, не зависит от давления и изменение суммарного давления в реакционной системе непосредственно не изменяет ее величины, повышение давления может привести к смещению равновесия в направлении, при котором уменьшается суммарное число молей присутствующих газов. [c.198]

    Проверку адекватности математического описания нестационарного процесса абсорбции в насадочной колонне и определение влияния различных факторов на характер переходных процессов в аппарате производили путем сравнения экспериментальных и расчетных динамических характеристик системы для хорошо-, средне- и плохорастворимых газов (соответственно системы N113—1120, ЗОа—НаО, СОа—Н2О). Для системы N113—Н2О равновесные данные рассчитывали по формуле [51]Ig т=4,705—1922/Г для системы СО2—Н2О — по формуле [52] т = 2АЬ/ а- Ь Р) для системы ЗОз—Н2О — по формуле [53] с = Р1о,1т) К РЬо п, где т — константа равновесия а, Ь — постоянные коэффициенты Т — абсолютная температура — константа равновесия реакции [c.422]

    Здесь же приведем данные о конверсии СО, поскольку эта реакция (СО-ЬНаО — -СОг+Нг) приводит к получению дополнительных количеств водорода. На результаты этой реакции оказывают влияние температура и состав исходной смеси, причем уравнение, связывающее степень превращения СО— X с константой равновесия и соотношениями компонентов в исходной смеси /ИнзО- осо НаО осОа осо = 6 oJ. она тосо = бна, следующее  [c.320]

    Большинство систем природного газа находится при давлении сходимости 210,9—351,6 кгс/см2. Для таких систем при давлении в пих, равном 70,3— 84,4 кгс/см2, влияние давления сходимости на величину константы равновесия номинально, особенно для расчетов процесса обычной сепарации. В табл. 4 представлены некоторые значения константы равновесия К для системы природный газ—нефть [26], которые необходимы для таких расчетов. Табл. 4 составлена на основании данных Винна, Катца, Гачмуса. Этими данными удобно пользоваться при обычных расчетах. Графики зависимости констант равновесия углеводородов от давления при температурах 26,7 и 37,8° С, построенные по данным этой таблицы, представлены на рис. 35. [c.49]

    Влияние выбора константы равновесия К на результаты расчетов. Константа равновесия К может иметь много значений, поэтому при расчетах необходимо принимать то значение К, которое наиболее реально характеризует состояние системы. К сожалению, при определении константы равновесия всегда имеется элемент риска. В критических случаях значение К лучше определять экспериментально. Если это невозможно, то необходимо выбрать такой метод определения Я, который больше всего подходит для данной системы. Один из практических подходов з аключается в том, чтобы убедиться, что все значения константы равновесия внутренне последовательны. Для этого, например, рекомендуется построить график зависимости log К от для каждого компонента. В результате должна получиться прямая линия. Если она не получается, то необходимо принять величины К такими, чтобы получить прямую линию. При выполнении этой процедуры необходимо уделить большое внима ние средней температуре кипения компонентов (от пропана до гексана). Внутренняя последовательность позволит уменьшить ошибку, которая появляется при применении равновесных данных. [c.72]


Смотреть страницы где упоминается термин Константа равновесия влияние температуры: [c.92]    [c.56]    [c.84]    [c.221]    [c.89]    [c.127]    [c.225]    [c.222]    [c.48]    [c.49]    [c.270]   
Химическая термодинамика (1966) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Константа равновесия

Равновесие влияние температур

Равновесие константу, Константа равновесия



© 2025 chem21.info Реклама на сайте