Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бимолекулярное механизм

    Бимолекулярные механизмы реакций электрофильного алифатического замещения аналогичны механизму Sn2 в том от-нощении, что новая связь образуется, когда разрывается старая. Однако в механизме Sn2 входящая группа несет с собой пару электронов и эта орбиталь может перекрываться с орбиталью центрального атома углерода лишь в той степени, при которой уходящая группа отделяется со своими электронами, в противном случае у углерода было бы более восьми электронов на внешней оболочке. Поскольку электронные облака отталкиваются, входящая группа атакует молекулу субстрата с тыла под углом 180 к уходящей группе, так что при этом наблюдается обращение конфигурации. Если атакующей частицей является электрофил, несущий субстрату только вакантную орбиталь, такое рассмотрение неприменимо и невозможно заранее предсказать, с какой стороны должна происходить атака. Теоретически можно представить два главных направления атаки и соответственно два механизма Se2 (с фронта) и Se2 (с тыла) (заряды на схеме не показаны)  [c.408]


    Действительно, наличие такого бимолекулярного механизма для замещения электроотрицательного заместителя в любом простом (неактивированном) ароматическом производном должно еще быть показано. [c.476]

    Чтобы определить стадии процесса, кинетику замещения водорода на галоген сравнивали с кинетикой взаимодействия галоидов с водородом. Энергия активации при образовании галоидоводородных кислот в результате взаимодействия галоидов с водородом была рассчитана с точки зрения бимолекулярного механизма и механизма образования через свободные радикалы. Сопоставление полученных результатов с экспериментальными показало, что в случае фтора, хлора и брома промежуточно образуются свободные радикалы, в то время как реакции иода с водородом протекают по бимолекулярному механизму. [c.264]

    Значения Ец для реакций замещения водорода в этилене на хлор (с образованием хлористого винила) по радикальному и бимолекулярному механизмам очень близки (45 и 43 ккал/моль соответственно). Однако они заметно больше, чем при замещении атомов водорода в алканах это показывает, что скорость второй реакции намного больше. [c.265]

    Бимолекулярный механизм активации мономолекулярной реакции [c.162]

    Во всех примерах, кроме примера с ионом трехвалентного железа, обращает на себя внимание тот факт, что активные промежуточные продукты содержат четное количество избыточных по сравнению с катализатором атомов кислорода, а неактивные — нечетное (один). Это объясняется тем, что промежуточный продукт, обладающий одним избыточным атомом, может разложиться только по бимолекулярному механизму, например [c.283]

    Г[рн этерификации хлорангидридами кислотный катализ отсутствует или выражен слабо. Бимолекулярному механизму реакции [c.207]

    На первый взгляд кажется очень естественным принять, что это элементарная бимолекулярная реакция, в которой две молекулы аммиака непосредственно превращаются в четыре молекулы образующихся продуктов. Однако, исходя из указанного принципа, обратная реакция при условии равновесия также должна быть элементарной реакцией прямого взаимодействия трех молекул водорода и одной молекулы азота. Поскольку такой процесс отвергается как маловероятный, бимолекулярный механизм прямой реакции также следует отвергнуть в пользу другого механизма. [c.49]

    Бимолекулярный механизм нуклеофильного замещения определяет стереохимический аспект всего процесса. Если атака происходит по асимметрическому атому углерода, то образование активированного комплекса схематически можно представить в виде [c.188]


    Так как в большинстве случаев рассматриваемые реакции проводят в среде диэтилового эфира — апротонного полярного растворителя, то есть основания относить их к реакциям нуклеофильного замещения атома галогена, протекающим по одностадийному бимолекулярному механизму N2  [c.267]

    Галогенбензолы могу вступать в реакцию замещения с нуклеофилами по бимолекулярному механизму SJ 2  [c.205]

    Эта реакция протекает по бимолекулярному механизму в том смысле, что она осуществляется при взаимодействии молекул [c.152]

    Линдеманн (1922 г.) применил теорию столкновений к моно-молекулярным реакциям. Он предположил, что такие реакции также осуш,ествляются по бимолекулярному механизму, т. е. элементарному акту реакции предшествует активация молекулы в результате столкновения. Активные молекулы имеют только две возможности дальнейшего превращения либо дезактивацию при следующем столкновении, либо превращение в продукт реакции [c.171]

    Бимолекулярный механизм присоединение-отщепление заключается в атаке нуклеофила (Ми) непосредственно на атом углерода связи С—Hal. Осуществляется преимущественно при наличии в ядре акцепторных заместителей, повышающих подвижность галогена  [c.254]

    Выше (см. с. 81) отмечалось, что по параметру а топлива близки к парафиновым и нафтеновым углеводородам, у которых прочность С—Н-связей находится в диапазоне 395— 380 кДж/моль. Для таких углеводородов предпочтителен бимолекулярный механизм зарождения (см. с. 38), и, видимо, именно он преобладает в топливах в присутствии кислорода. Однако значения энергии активации зарождения цепей (80— 96 кДж/моль) в топливах позволяют предположить, что заметный вклад в инициирование вносит и тримолекулярная реакция. С этим согласуется и диапазон предэкспоненциальных факторов А [102—104 л /(моль -с)], если их вычислить из величин и,о, полагая [КН]=7 моль/л, а [02] = 10 2 моль/л. Из величин ,о оценим значения Лн н наиболее слабых С—Н-связей в топливах по двум формулам ( , о-Ь221) кДж/моль (при предположении о преобладании бимолекулярной реакции) и = 72 ( 0 4-570) кДж/моль (при предположении о тримо-лекулярной реакции) (см. с. 38). [c.89]

    Азосочетание идет по бимолекулярному механизму через промежуточное образование а-комплекса, превращающегося в конечный продукт при действии основания  [c.253]

    Однако в процессе реакций замещения наблюдаются аллиль-ные перегруппировки, которые, безусловно, осуществляются по бимолекулярному механизму. Эти реакции обозначаются 8 2 и протекают, по-видимому, по схеме  [c.124]

    Суммарная энергия активации равна около 29,4 ккал/моль. Экспериментально полученная величина составляет около 34 ккал/моль, что достаточно хорошо согласуется с теорией и доказывает, что взаимодействие хлора с водородом протекает через свободные радикалы. В самом деле, величина Е , рассчитанная, исходя из предположения о бимолекулярном механизме, равна около 75 ккал/моль, что сильно расходится с экспериментальными данными. Подтверждением радикального механизма образования H I является и тот факт, что реакция ингибируется кислородом. Общая скорость реакции пропорциональна содержанию хлора и обратно пропорциональна содержанию кислорода и поверхности peaктора. [c.264]

    Оба эти механизма описываются одинаковым кинетическим уравнением только до тех пор, пока диссоциация Ij находится в состоянии термического равновесия и число имеющихся в наличии атомов иода определяется термической константой равновесия согласно уравнению (22-23). При более высоких температурах диссоциация усиливается, и это дает такой же результат, как и повыщение константы скорости бимолекулярной реакции. Дж. Салливэн рещил проверить обе теории, изменяя концентрацию атомов иода по сравнению с нормальной, соответствующей термической диссоциации Ij. Он осуществил это при помощи ртутной лампы, пары которой излучают свет с длиной волны 578 нм, вызывающий диссоциацию Ij. Этот свет не должен оказывать на реакцию заметного влияния, если она протекает по бимолекулярному механизму, лишь несколько понижая концентрацию Ij. Но если реакция действительно вклкэчает стадию тримолекулярных столкновений с атомами иода, скорость реакции должна возрастать с интенсивностью облучающего света, поскольку при этом образуется больше атомов иода. [c.381]

    Механизм и кинетика реакций. Гидролиз и щелочное дегидрохлорирование хлорпроизводных принадлежат к реакциям нуклеофильного замещения и отщеп.яення. В большинстве практически важных случаев они протекают по бимолекулярному механизму. При 1 идролнзе лимитирующая стадия состоит в атаке гидролизующим агентом атома углерода, с которым связан хлор, причем новая связь образуется синхронно по мере разрыва прежней связи мех 1НИЗМ 5л 2)  [c.171]

    М(ханизм и кинетика реакций этерификации. В большинстве случагв этерификация протекает по бимолекулярному механизму с разрывом ацил-кислородной связи, когда самой медлеииой стадией является атака протонироваииой кислоты молекулой спирта  [c.207]

    Реакция переалкилирования ароматических углеводородов в настоящее время получила самостоятельное оформление в виде процессов для получения низших ароматических углеводородов—процессы Таторей (Япония) и Ксилолы плюс (США). В связи с отсутствием изомеризационных превращений при межмолекулярной миграции алкильных групп [201] был сделан вывод, что при переалкилировании межмолекулярный перенос заместителя не может протекать в виде карбениевых ионов, которые претерпели бы изомеризацию в более стабильные вторичные или третичные структуры. Мак-Коли и А. Лина впервые высказали предположение о том, что в выбранных условиях (каталитическая система ВРз-НР, температура 20°С) межмолекулярная миграция протекает по бимолекулярному механизму. При этом вторая стадия реакции — взаимодействие с-комплек-са с нейтральной ароматической молекулой — является лимитирующей. [c.171]


    WOHO- и бимолекулярному механизмам, причем снижение количества катализатора приводит к доминированию второго маршрута. Следует отметить, что обмен с растворителем начинается лишь после значительного индукционного периода, когда система приближается или достигает равновесного состояния. [c.226]

    Учитывая, что полифениленэтил являегся насыщенным полимером, мож-но было бы иредиоложить, что реакция его с серой будет протекать по бимолекулярному механизму согласно схеме  [c.157]

    Оказалось, что замещение соответствует реакции второго порядка, т. е, протекает по бимолекулярному механизму, и что скорость уменьщения оптической активности в два раза превышает скорость изотопного обмена. Последнее означает, что в результате каждого элементарного акта происходит обращение конфигурации это полностью соответствует пре.аставленмям о механизме 5n2, предполагающем атаку нуклеофильного реагента исключительно с тыльной стороны по отношению к уходящей из молекулы субстрата группе. [c.137]

    Следует иметь в виду, что различные реакции, протекающие в гомогенных условиях по бимолекулярному механизму (например, образование HI) на поверхности металлов, имеют первый порядок. В то время как в гомогенной системе предпосылкой осуществления реакции является столкновение двух молекул, на поверхности возможен непосредствеи-ный распад молекулы ( выиг-мов протекания реакции, отличаю- рыш энергии за счет образо-щихся разной энергией активации при вания адсорбционной СВЯЗИ С высокой и низкой температуре. поверхностью). Поэтому энергия активации гетерогенной реакции оказывается значительно более низкой, чем для той же реакции, протекающей в гомогенной системе. Часто на некоторых типах поверхности реакция идет через параллельные стадии гомогенного и гетерогенного механизма при высокой температуре преобладает гомогенная реакция, при более низкой — гетерогенная. Скорость гомогенной реакции увеличивается с температурой быстрее, чем скорость гетерогенной, вследствие более высокой энергии активации гомогенной реакции поэтому при повышении температуры преобладает гомогенная реакция (рис. Б.14). [c.190]

    Многочисленные реакции нуклеофильного замещения тяготеют к двум типам. Первый возможный механизм — нуклеофильное бимолекулярное замещение, обозначаемое символом 5л/2, где 5 — substitution (замещение) N — nu le-ophyl 2 — бимолекулярный механизм. Суть процесса заключается в том, что к молекуле R — X приближается нуклеофильный реагент Z. Начиная с некоторого расстояния, происходит ослабление, разрыхление и растягивание связи R — X. Атакующая частица Z подходит со стороны, противоположной группе X, которая обычно электроотрицательна и несет заряд 6 . В результате возникает переходное состояние П [c.187]

    Влияние на тип реакции (элиминирование и замеш,ение). Сильные основания не только способствуют реакциям Е2 по сравнению с реакциями Е1, но и элиминированию в сравнении с замещением. При высокой концентрации сильного основания в неионизирующихся растворителях вообще более предпочтительны бимолекулярные механизмы, но реакции Е2 преобла-цают над реакциями Зк2. При низких концентрациях основания [c.34]

    Исходя из представлений Я. Вапт-Гоффа о моно- и бимолекулярном механизме простых реакций и рассматривая скорость сложного химического процесса как сумму скоростей отдельных элементарных реакций, В. А. Кистяковский показал, что в большинстве случаев кинетическое уравнение сложного процесса представляет собой один из частных случаев общего уравнения  [c.344]

    Детальное рассмотрение химических процессов с молекулярнокинетической точки зрения показывает, что большинство из них протекает по так называемому радикально-цепному механизму. Особенность цепных реакций заключается в образовании на промежуточных этапах свободных радикалов — нестабильных фрагментов молекул с малым временем жизни, имеющих свободные связи -СНз, -СгНа, С1-, N , HOj- и т. п. Связанная система сложных реакций, протекаюищх г.оследовательно, параллельно и сопряженно с участием свободных радикалов, называется цепной реакцией. По цепному механизму развиваются многие процессы горения, взрыва, окисления н фотохимические реакции. Значение цепных реакций в химии и в смежных с нею областях науки (биологии, биохимии) очень велико. Выдающаяся роль в изучении цепных процессов принадлежит советскому ученому акад. Н. Н. Семенову, сформулировавшему основные закономерности протекания таких реакций. Основные стадии цепных реакций зарождение цепи, продолжение цепи, разветвление цепи и обрыв цепи. Зарождение цепи — стадия цепной реакции, в результате которой возникают свободные радикалы нз валентно-насыщенных молекул. Эта стадия осуществляется разными путями. Так, при синтезе хлористого водорода из водорода и хлора образование радикалов осуществляется за счет разрыва связи С1—С1 (по мономолекулярному механизму) под воздействием кванта света b + Av l- +С1-. А при окислении водорода зарождение цепи происходит за счет обменного взаимодействия по бимолекулярному механизму Н2-гО = Н--f-НОг. Образование свободных радикалов можно инициировать введением посторонних веществ, обладающих специфическим действием (инициаторов). В качестве инициаторов часто используют малостабильные перекисные и гидроперекисные соединения. [c.219]

    В некотором смысле химики и биохимики всегда использовали схемы (диаграммы со стрелками-указателями для путей метаболизма и т. д.). Но первыми схемами, изученными как математические объекты, явились, по-видимому, схемы, введенные Л.С. Ли и автором данной работы [16], разработавшими графические способы генерации всех возможных механизмов (или (. Алгебраический метод для бимолекулярных-бимолекулярных механизмов был предложен Селлерсом [17]. Другие типы схем были использованы Кларком [18], который графически нашел миноры определителя для линеаризованных областей устойчивости по Ляпунову, и для различных целей — Файнбергом, Хорном, Джексоном, Остером, Перельсоном и др. [19]. [c.86]

    Реакции хлорангидридов имеют очень много общего с реакциями нуклеофильного замещения в алкилгалогенидах они протекают по MOHO- и бимолекулярному механизмам, причем истинный путь реакции сильно зависит от полярности среды и от способности растворителя сольватировать образующиеся ионы [c.226]

    Было показано, что реакции отщепления могут протекать как по MOHO-, так и по бимолекулярному механизму. Их обозначают соответсгвенно Е и Е2, по аналогии с механизмами реакций нуклеофильного замещения S] и 5дг2, которые часто сопровождаются реакциями отщепления, как, например, при атаке алкилгалогенидов основаниями  [c.232]

    Одним из наиболее мощных факторов, влияющих на соотношение между реакциями отщепления и замещения (с данным с ч стратом), является переход от моно- к бимолекулярному механизму. Так, например, сольволиз МезСВг спиртом EtOH (в-основлом 1/S fl) дает только МеоС = СН2, но в присут- [c.244]


Смотреть страницы где упоминается термин Бимолекулярное механизм: [c.161]    [c.163]    [c.165]    [c.96]    [c.382]    [c.33]    [c.453]    [c.110]    [c.408]    [c.101]    [c.244]    [c.243]   
Органическая химия Том1 (2004) -- [ c.586 ]




ПОИСК







© 2024 chem21.info Реклама на сайте