Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие фотохимическое

    Галогены. Мы уже указывали на спектроскопические данные о диссоциации молекул галогенов на свободные нейтральные атомы. В случае брома и иода на основании измерений интенсивности поглощения можно вычислить химический состав смеси при стационарном равновесии фотохимической реакции (в условиях постоянного освещения) между диссоциацией (1) и рекомбинацией (2)  [c.126]


    Катализатор влияет на скорость достижения равновесия, но не на состояние равновесия. Реакции, которые характеризуются ощутимо положительной величиной АР°, можно заставить протекать, применяя методы внешнего воздействия, такие как электрическая анергия в электролитических и свет в фотохимических реакциях. В этих случаях при расчете свободной энергии методом суммирования должна учитываться энергия, сообщенная извне, при этом численное значение величины изменения свободной энергии реакции становится отрицательным по величине. [c.365]

    В фотохимических реакциях равновесие смещается под действием света, который изменяет скорости прямой и обратной реакций, а за счет поглощения света изменяется запас свободной энергии системы, изменяется константа равновесия ее. Очевидно, что заметное нарушение равновесия можно наблюдать только в тех случаях, когда квантовый выход реакции близок к единице. [c.237]

    Введение добавок, как отмечалось выше, может увеличить долю первых синглетных состояний сенсибилизатора или исключить обратную изомеризацию за счет тушения триплетов образующегося олефина. Теперь становится понятным смещение фотохимического равновесия в присутствии различных добавок. [c.68]

    Квантовые выходы, естественно, определяются соотнощениями (3.21). Интересно, что и при радикальном механизме при фотохимическом равновесии (Шд=Шт=0) по концентрациям продуктов можно определить константы- скоростей элементарных реакций, используя соотношения (3.22), где 71=йкц/йкт и у2= рц/ рт- Особенностью радикального механизма является ощутимое влияние температуры на скорость химических превращений, так как энергии активации для всех элементарных реакций в этом случае значительны. [c.77]

    Скорость реакции зависит от мно] их причин. На нее влияют природа и концентрация реагентов, давление (для реакций с участием газов), температура, катализатор, примеси и их концентрации, степень измельчения (в реакциях с участием твердых веществ), среда (для реакций в растворах), форма сосуда (в цепных реакциях ), интенсивность света (в фотохимических реакциях), потенциал электродов (в электрохимических реакциях), мощность дозы излучения (в радиационнохимических процессах). Таким образом, лишь некоторые из факторов, действующих на скорость реакции, одновременно оказывают влияние на химическое равновесие. В связи с этим надо отметить огромную трудность учета действия различных факторов на скорость реакции и, тем более, количественной их оценки. [c.102]


    Температурный коэффициент и механизм фотохимических реакций 171 условие является условием равновесия [c.171]

    Скорость реакции зависит от природы реагирующих веществ, их концентрации, наличия посторонних веществ (например, катализаторов) и их концентрации среды, в которой протекает реакция, и условий протекания реакции температуры, давления (особенно для реакций с участием 1 азов), облучения (фотохимические реакции) и т. п. Каждая химическая система с течением времени приходит в состояние динамического равновесия, при котором скорость прямой реакции равна скорости обратной реакции. Например, [c.324]

    Применительно к химическим процессам второй закон термодинамики можно сформулировать так всякое химическое взаимодействие при неизменных давлении или объеме и постоянстве температуры протекает в направлении уменьшения свободной энергии системы. Пределом протекания химических реакций (т. е. условием равновесия) является достижение некоторого минимального для данных условий значения свободной энергии системы О или Р. Процессы протекают самопроизвольно и дают некоторую полезную работу, если Р<0 или ДС<0. При АР>0 и ДС>0 процессы не могут при заданных условиях (у, Т или р, Т) протекать самопроизвольно и возможны лишь при получении работы извне (например, реакции при электролизе, фотохимические реакции и др.). Изменение термодинамических функций А[1, АР, А/, АО и А5 для любых реакций рассчитывают по закону Гесса аналогично вычислению тепловых эффектов реакций. Значения термодинамических функций при стандартных условиях / = 25°С и р=101 325 Па приводятся в справочных таблицах. [c.61]

    Растворение щелочных металлов и электрохимическое генерирование позволяют получить сольватированные электроны в равновесии с окружающей средой. Сольватированные электроны в неравновесном состоянии образуются при отрыве электронов от молекул, ионов или атомов под действием высокоэнергетического рентгеновского или у-из-лучения или потока быстрых электронов (радиационно-химический метод) или под действием света (фотохимический метод). Этими методами можно генерировать сольватированные электроны в самых разнообразных растворителях, в том числе и в воде. Сольватированные электроны — чрезвычайно реакционноспособные частицы и реагируют с молекулами растворителя со значительными скоростями. Поэтому, например, в воде время жизни сольватированного электрона менее [c.79]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Между фотохимическими и обычными реакциями имеется существенное отличие термодинамического характера. Протекающие самопроизвольно обычные реакции всегда сопровождаются уменьшением свободной энергии. Для собственно фотохимической реакции свободная энергия возрастает в соответствии с законом сохранения энергии. За счет поглощения квантов света равновесие реакции смещается и меняется ее константа равновесия. Установление этого факта К. А. Тимирязевым для фотосинтеза в растениях имело принципиальное значение. Оно нанесло решительный удар по идеалистическим теориям об осуществлении процессов в природе за счет особой жизненной силы . [c.202]

    Развитие фотохимии и радиационной химии породили такие методы, как импульсный фотолиз и импульсный радиолиз. Данные методы основаны на получении мощного светового потока или жесткого излучения за короткий промежуток времени, которые воздействуют на химическую систему и приводят к созданию больших концентраций реакционноспособных молекул. Отличие от релаксационных методов заключается в том, что под действием мощных световых, рентгеновских или Y-излучений происходят коренные изменения системы, а не просто небольшой сдвиг равновесия. Импульсные методы исследования широко применяются в излучении механизмов химических и физических процессов в химии, физике и биологии. При помощи метода импульсного фотолиза можно изучать такие реакционноспособные частицы, как свободные радикалы, ио Н-радикалы, ио ны, а также различные промежуточные продукты и состояния, образующиеся в ходе фотохимических превращений. [c.155]


    Теперь более подробно рассмотрим существенные различия между термическими и фотохимическими реакциями. Тепловая энергия, запасаемая молекулой при нагреве, распределяется по всем степеням свободы частицы молекула испытывает поступательное, вращательное и колебательное возбуждение, а также электронное. Для частиц, находящихся в тепловом равновесии с окружением, выполняется закон распределения Больцмана. Этот закон устанавливает, что относительное число частиц П и п.2 на двух одинаково вырожденных уровнях 1 и 2, различающихся на энергию АБ, дается выражением [c.14]

    Реакции фотохимического образования и разложения озона приводят к фотохимическому равновесию, благодаря которому в облучаемом кислороде поддерживается некоторая небольшая концентрация озона. Слой земной атмосферы, в котором находится большая часть образующегося озона, ежит примерно в 24 км от поверхности Земли его называют озоновым слоем. [c.564]

    На основании некоторых реакций циклоприсоединения систем типа А (9) можно сделать вывод, что такие соединения могут находиться в равновесии с небольшими количествами валентных таутомеров (43) (схема 7) [7]. Таутомеры (43) могут возникать также при некоторых фотохимических превращениях соединений типа А. [c.719]

    По мнению авторов [36], для стильбена существуют два триплетных состояния — обычный трансоидный триплет (обнаруживаемый спектроскопически) и закрученный ( фантом-триплет , неспектроскопический) триплет (см. рис. 4,6). Понятно, что сенсибилизаторы с низкой энергией возбуждения действуют как обычные катализаторы, и в их присутствии фотостационарный состав совпадает с термодинамически равновесным. Если, однако, кроме сенсибилизатора ввести тушители возбужденных триплетов только транс- или или только г с-олефина, то фотохимическое и термодинамическое равновесия и в этом случае б дут различаться. [c.70]

    Полученные соотношения позволяют по результатам химических измерений определить характеристики элементарных процессов передйчи энергии. В частности, при достижении фотохимического равновесия с концентрациями [Оц]р и [От]р легко определить два отношения констант скоростей флуоресценции и синглет-триплет-ного перехода (71=/гфл/ ст) и констант скоростей образования цис- и транс-изомеров из олефинового триплета (v2 = W xt) пс таким уравнениям  [c.76]

    Из этих соотношений вместе с тем видно, что концентрации продук тов при фотохимическом равновесии зависят от величины 71, т. е от природы сенсибилизатора. Кроме того, константы фл и кст н< зависят от температуры, и температурная зависимость Kopo iei определяется энергиями активации темновых реакций триплет ктщ и fexT. Выше отмечено, что эти энергии активации не превышаю  [c.76]

    Скорость реакции зависит от многих факторов. На нее влияют природа и концентрация реагентов, давление (для реакций с участием газов), температура, катализатор, примеси и их концентрации, степень измельчения (в реакциях с участием твердых веществ), среда (для реакций в растворах), форма сосуда (вцепных реакциях), интенсивность сЕ.ета (в фотохимических реакциях), потенциал электродов (в электрохимических реакциях), мощность дозы излучения (в радиационнохимических процессах). Лишь некоторые из факторов, действующие на скорость реакции, одновременно оказывают влияние на химическое равновесие. [c.214]

    Фотохимические и лазерохимические процессы. Лри облучении светом реагирующих веществ происходят различные химические реакции. Кроме этого, свет может повысить скорость реакций, направляя их по механизму с меньшей энергией активации (фотоактивируе-мые реакции) или смещая равновесие реакции. В реакциях фотосинтеза световая энергия аккумулируется в виде внутренней энергии образующихся веществ. Именно фотосинтезом восполняются запасы энергии на Земле за счет лучистой энергии Солнца. [c.177]

    Избыточная энергия, которой в момент их возникновения обладают продукты первичного фотохимического распада, делает их болсс реакционно-способными, чем те же частицы, но находящиеся в тепловом равновесии с окружающим газом. Частигщ с повышенным запасом энергии получили название горячих частнц . [c.161]

    Как следует иа формулы (27.2), скорость фотохимической реакции становится равной нулю, т. е. реакция прекращается, когда расходуется весь водород или весь бром, т. е. когда происходит полпое превращение одного иа исходных веществ в продукт реакции. Этот предел реакции отвечает равновесию [c.171]

    Совпадение предела реакции с ее равновеслем наблюдается не всегда. Обычно предел реак ,ии не совпадает с равновесием в тех фотохимических реакциях, когда св( т по-разному действует на прямую и обратную реакции. Рассмотрим такой случай на том же примере реакции брома с водородом. [c.171]

    В ходе реакции ядра и электроны занимают положения, которые в каждый момент соответствуют наименьшей возможной свободной энергии. Если реакция обратима, эти положения должны быть одинаковы в прямом и обратном процессах. Это означает, что прямая и обратная реакции (при соблюдении одинаковых условий) должны происходить по одному и тому же механизму. В этом заключается принцип микроскопической обратимости. Например, если в реакции А В образуется интермедиат С, то С должен также быть интермедиатом в реакции В А. Этот принцип помогает установить механизм реакции в тех случаях, когда равновесие сильно сдвинуто в одну сторону. Обратимые фотохимические реакции являются редким исключением, так как молекула, возбужденная фотохимически, не должна терять энергию тем же путем (см. гл. 7). [c.283]

    Обычно различают три типа процессов поглощение, вынужденное излучение и спонтанное излучение. Предположим, что химическая частица имеет два квантовых состояния I и т с энергиями е и вт- Если частица первоначально находится в нижнем состоянии I, то она может взаимодействовать с электромагнитным излучением и поглощать энергию, переходя в состояние т. В обычных процессах поглощение происходит одноступенчато, так что разность между исходным и конечным уровнями точно равна энергии одного фотона излучения следовательно, поглощение излучения происходит лишь при условии 8т—Е1 = Н условие Бора ), Процесс поглощения состоит в потере интенсивности электромагнитного излучения и получении энергии поглощающей частицей. Обратный процесс, когда частица, находящаяся в верхнем состоянии, отдает энергию электромагнитному излучению, известен как вынужденное излучение слово вынужденное указывает, что существует взаимодействие между излучением и возбужденными частицами, вызывающее потерю энергии. Хотя мы не рассматриваем природу взаимодействия частицы и излучения, ясно, что скорость (интенсивность) поглощения или вынужденного излучения пропорциональна скорости столкновений фотонов с поглощающими или излучающими частицами, т. е. изменение интенсивности пропорционально плотности излучения р и концентрации химических частиц. Коэффициент пропорциональности определяет так называемые коэффициенты Эйнштейна В , й/т — коэффициент для процесса поглощения, Вт1 — для вынужденного излучения согласно принципу микроскопической обратимости, Вш = Вт1, и этот же результат можно получить при строгом следовании теории излучения. Скорости поглощения и вынужденного испускания равны В/тПгр и Вт1Птр = = В1тПтр) соответственно, где щ и Пт — концентрации частиц в низко- и высоколежащих состояниях. В случае теплового равновесия Пт всегда меньше, чем П1 [см. уравнение Больцмана (1.4)], и вклад поглощения оказывается более существенным, чем вынужденного испускания. Различие вкладов поглощения и вынужденного испускания определяется соотношением между величиной (вт—е ) и температурой Т. Уже упоминалось, что характерными для фотохимии являются уровни энергии ът--е.1) >кТ и Пт<.П1, поэтому вклад вынужденного испускания в фотохимические процессы в условиях теплового равновесия пренебрежимо мал. Однако в неравновесных ситуациях вынужденным испусканием уже нельзя пренебрегать, и если инверсия заселенности (/гт> () возрастает, то процессы испускания начинают преобладать над поглощением, и в [c.29]

    Из проведенных исследований можно сделать вывод, что в фотохимических реакциях карбен действительно генерируется, однако относительно термического процесса общего согласия нет. Существование равновесия между ацилкарбеном и оксиреиом установлено в фотохимических реакциях [67]. Этот аспект механизма реакции был доказан с помощью изотопных меток  [c.281]

    При облучении растворов СПО 16 в полосах поглощения изомерных форм А и В наблюдается смещение равновесия до установления фотостационарного состояния, положение которого определяется соотношением квантовых выходов фотоокрашивания - 0.09-0.26, и фотообесцвечивания - 0.003-0.03 Фотохимическая изомеризация замещенного бицикла-[2.2.1]гептан-2,5-диена(норборнадиена) в соответствующий тетрацикло[3.2.0.0 ,0 гептан (квадрициклан) позволяет рассматривать его как весьма перспективную систему для аккумулирования солнечной энергии [c.331]

    Общая закономерность глобального распределения озо а сформулирована в форме принципа Дютша - Добсона. Суть его состоит в том, что средняя стратосфера над экваториальным поясом находится в состоянии фотохимического равновесия, при котором скорость образования и скорости стока озона уравниваются и выполняется условие = 0. Перенос озона в нижнюю стратосферу высоких [c.227]

    Если бы мы увеличили концентрацию МОз (таким образом, чтобы при этом не использовался Оа), тогда равновесие поддерживалось бы за счет увеличения концентрации О3. Это происходит в фотохимическом смоге через посредничество радикалов гидроксила (ОН) в процессе окисления углеводородов. Рассмотрим метан (СН4) в качестве простого примера этого процесса  [c.56]

    Фотохимическое отщепление монооксида углерода из 1,3-дити-олонов-2 приводит к соединению (51), которое находится в равновесии со своим валентным таутомером—1,2-дитионом (52) [22]. Истинный дитиет (53), являющийся частью жесткой стероидной структуры, получен из конденсированного дитиана при фотохимическом отщеплении молекулы этилена [23]. [c.300]


Смотреть страницы где упоминается термин Равновесие фотохимическое: [c.194]    [c.79]    [c.181]    [c.316]    [c.136]    [c.2006]    [c.316]    [c.94]   
Физическая химия Том 2 (1936) -- [ c.500 ]




ПОИСК







© 2025 chem21.info Реклама на сайте