Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебательно-вращательные спектры многоатомных молекул вращательная и комбинационное рассеяние

    Благодаря сложности электронно-колебательно-вращательных спектров многоатомных молекул определение их колебательных и вращательных постоянных из анализа электронных спектров, как правило, оказывается невозможным. Такой анализ был выполнен только для нескольких наиболее простых молекул типа НСО и СЮа. Поэтому постоянные в уравнениях (1.45)—(1.64) определяются в результате анализа инфракрасных колебательновращательных спектров и спектров комбинационного рассеяния, а также микроволновых вращательных спектров молекул. Определение частот нормальных колебаний со и постоянных ангармоничности Хпм многоатомных молекул возможно только при условии, что в спектре наблюдаются все основные частоты а также обертоны и составные частоты, связанные с каждой из этих постоянных. В связи с тем, что инфракрасные спектры многоатомных молекул обычно исследуются в поглощении, в них наблюдаются только основные частоты и, в лучшем случае, несколько наиболее интенсивных обертонов или составных частот. Поэтому для большей части многоатомных молекул в результате исследования спектров удается определить не частоты нормальных колебаний а основные частоты v . В частности, из 170 многоатомных молекул, рассматриваемых в Справочнике, частоты нормальных колебаний и постоянные ангармоничности известны только для 15 молекул. Результаты исследований инфракрасных спектров и спектров комбинационного рассеяния простых многоатомных молекул, выполненных по 1944 г., собраны в монографии Герцберга [152]. Однако результаты многочисленных исследований, выполненных после 1944 г., могут быть найдены только в периодической литературе. Обзоры исследований спектров многоатомных молекул, рассматриваемых в настоящем Справочнике, и обоснование выбора их колебательных постоянных даны в соответствующих разделах глав 2-й части этого тома. [c.66]


    Возможность непосредственно наблюдать вращательные и колебательные переходы в области видимого света основывается на открытии Раманом и Мандельштамом явления комбинационного рассеяния света. При прохождении монохроматического света через вещество в спектре рассеянного света наряду с линией излучения источника света появляются также линии с более высокими и более низкими частотами. Эта разность частот относительно основной частоты источника света соответствует изменению энергии при колебательных переходах. Основное достоинство спектроскопии комбинационного рассеяния (КР) состоит в том, что с ее помощью можно точно и просто определять собственные частоты колебаний молекулы. При этом можно различить валентные и деформационные колебания. Последние возможны у многоатомных нелинейных молекул. Так, например, молекула воды НгО имеет два валентных колебания [c.68]

    Поляризуемость молекулы можно рассматривать состоящей из трех слагающих, расположенных под прямыми углами величины последних определяют так называемый эллипсоид поляризации. Если только происходит изменение поляризуемости в одном каком-либо направлении, другими словами, если одна из трех компонент эллипсоида поляризуемости изменяется за время колебаний молекулы, то колебания будут взаимодействовать с излучением, давая в результате спектр комбинационного рассеяния. Аналогично, если только эллипсоид поляризуемости не является сферой, т. е. если его три оси не одинаковы, возможно вращательное комбинационное рассеяние. Для двухатомных молекул, независимо от того, имеют ли они одинаковые ядра или нет, эллипсоид поляризуемости не будет сферическим и будет изменять свои размеры при колебаниях молекулы. Следовательно, все молекулы этого вида будут производить колебательное и вращательное комбинационное рассеяние. Колебательное комбинационное рассеяние не наблюдается только в том случае, когда нет изменения ни одной из слагающих поляризуемости, т. е. ни одной из осей эллипсоида поляризации. Это имеет место, как будет видно позднее, для определенных колебаний многоатомной молекулы. Подобно этому, сферически симметричные молекулы, такие как метан или четыреххлористый углерод, не обнаруживают вращательного комбинационного рассеяния. < [c.244]

    Все перечисленные выше и ряд других сведений о строении молекул получаются из спектральных данных при помощи разработанной за последние десятилетия теории колебательных и вращательных спектров. Теория относится в равной мере к инфракрасным спектрам и спектрам комбинационного рассеяния и, конечно, не может быть изложена в настоящей главо. Она подробно изложена в монографиях, к которым и отсылаем читателя. Теория вращательных и колебательно-вращательных спектров многоатомных молекул систематически изложена в прекрасной монографии Герцберга [7]. Ряд вопросов теории, особенно методы расчета колебательных частот молекул и упругих электрооптических постоянных межатомных связей, в ьаиболсе полной и совершенной форме развиты в монографии Волькенштейпа, Ельяшевича и Степанова [5] см. также [4, 12, 549а, 559] и обширную библиографию в [7]. [c.483]


    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    СО2. Молекула СО2 имеет линейную симметричную структуру и принадлежит к точечной группе Воок- Две основные частоты 02(v2 и з) активны в инфракрасном спектре, третья ( 1) — в спектре комбинационного рассеяния. Инфракрасный спектр и спектр комбинационного рассеяния двуокиси углерода исследовались в десятках работ и к настоящему времени изучены лучше, чем для любой другой многоатомной молекулы. Герцберг [152] на основании анализа данных, опубликованных до 1944 г., рекомендует для молекулы СО2 значения колебательных постоянных, найденные Деннисоном [1314], и вращательные постоянные, полученные Аделем и Деннисоном [490] (см. табл. 132). [c.453]

    В случае комбинационного рассеяния правила отбора несколько отличаются от правил, приложимых к колебательным полосам инфракрасного спектра. Так, для линейных молекул Д/=0, 2 для параллельных полос и 1, 2 для перпендикулярных -ветвь должна, таким образом, присутствовать в параллельных и отсутствовать в перпендикулярных полосах. Для симметричных волчков АК=0 и = О, 1, 2 для колебаний, параллельных оси симметрии молекулы, тогда как для колебаний, перпендикулярных к этой оси, АК = 1, 2 и Д7 = 0, 1, 2. Взаимодействие между колебаниями и вращениями должно вести к аномальному разделению в перпендикулярных полосах, точно так же, как в инфракрасных спектрах. У сферически симметричных молекул только те полосы в спектре комбинационного рассеяния могут обнаруживать вращательную структуру, которые обусловлены не полностью симметричными колебаниями. Для такой полосы правилом отбора является условие Д/ = 0, 1, 2. Подобные правила отбора приложимы к полосам комбинационного рассеяния несимметричных молекул. Очевидно, что вследствие большого числа дозволенных вращательных переходов структура колебательных полос в спектрах комбинационного рассеяния многоатомных молекул должна быть сложна. Если бы нолосы были разрешены, то они дали бы возможность вычислить моменты инерции молекул, которые могли бы дополнить данные, получаемые из инфракрасных спектров. [c.284]


Библиография для Колебательно-вращательные спектры многоатомных молекул вращательная и комбинационное рассеяние: [c.287]   
Смотреть страницы где упоминается термин Колебательно-вращательные спектры многоатомных молекул вращательная и комбинационное рассеяние: [c.337]    [c.290]   
Теоретическая химия (1950) -- [ c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Вращательные спектры комбинационного рассеяния

Колебательные спектры многоатомных молекул

Комбинационное рассеяние

Молекулы многоатомные

Рассеяние молекулами

Спектр вращательный колебательно-вращательный

Спектр многоатомных молекул

Спектры вращательные

Спектры колебательно-вращательные

Спектры колебательные

Спектры комбинационного рассеяния

Спектры комбинационного рассеяния многоатомных молекул

Спектры молекул



© 2025 chem21.info Реклама на сайте