Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры колебательно-вращательные

    Электронно-колебательно-вращательные спектры [c.72]

    Для краткости называют электронно-колебательно-вращательный спектр просто электронным спектром. Он чрезвычайно сложен и состоит часто из множества серий полос в УФ и видимой области. Каждая серия отвечает одному электронному переходу. Энергия квантов, возбуждающих такие переходы, лежит в области 40—400 кДж/моль или 10 000—100 ООО см-1. [c.143]


    Лекция 2. Причины поглощения света молекулами. Физические основы возникновения окраски. Вращательное движение молекул. Вращательные спектры. Колебательное движение молекул. Колебательные спектры. Формы колебательных движений многоатомных молекул. Вращательно-колебательные спектры. Лекция 3. Основной закон фотометрии. Причины отклонения от основного закона фотометрии. Основные узлы спектрофотометрических приборов источники света, светофильтры [c.205]

    Переходам электронов в молекулах соответствует наибольшее изменение энергии в этом случае излучение является или видимым, или ультрафиолетовым. Переходы электронов сопровождаются изменениями в колебательном и вращательном движении все это отражается иа спектре, который показывает совокупность всех видов энергетических изменений в молекулах. Такой спектр называется электронно-колебательно-вращательным. [c.65]

    На рис. 13-32 показана обобщенная диаграмма энергетических уровней произвольной молекулы. На ней изображены два электронных уровня, Еу и 2, а также относящиеся к ним колебательные и вращательные уровни. Обычно расстояния между электронными энергетическими уровнями намного превышают расстояние между колебательными уровнями, которые в свою очередь намного больше расстояний между вращательными уровнями. Электронные переходы молекулы (т. е. переходы с одного электронного уровня на другой) соответствуют поглощению или испусканию электромагнитного излучения в видимой и ультрафиолетовой частях спектра колебательные переходы соответствуют поглощению или испусканию излучения в ближней инфракрасной и инфракрасной областях спектра, вращательные переходы отвечают поглощению или испусканию излучения в дальней инфракрасной и более длинноволновых, вплоть до микроволновой, областях электромагнитного спектра. [c.585]

    Колебательно-вращательный спектр двухатомной молекулы. Приближение гармонического осциллятора [c.155]

    Электронные (электронно-колебательно-вращательные) спектры [c.346]

    Энергия электронного возбуждения значительно больше энергии колебательного и вращательного движения, поэтому прн электронном возбуждении происходит возбуждение и колебательного, и вращательного движения. В спектре наблюдается сложная полоса, которую можно объяснить переходами между колебательно-вращательными уровнями нормального и возбужденного электронного состояний (рис. 8). [c.13]


    Как было указано выше, электронные переходы соответствуют поглощению больших порций энергии, чем при поглощении, обусловленном колебательными или вращательными переходами. Электронные переходы обычно связаны с поглощением видимого и ультрафиолетового света. Подобно тому как колебательные полосы поглощения уширены в результате наложения многих колебательно-вращательных переходов, спектры поглощения в видимой и ультрафиолетовой областях также содержат широкие полосы, а не острые пики вследствие наложения многих электронно-колебательных переходов (рис. 13-37). Полосы электронного спектра поглощения характеризуются длиной волны максимума каждой из них, [c.592]

    Колебательно-вращательные спектры двухатомных молекул лежат, как правило, в ИК-области. Каждый колебательный переход сопровождается большим числом вращательных переходов, поэтому вместо одной линии перехода в спектре возникает полоса. При хорошем разрешении можно определить отдельные линии, связанные g [c.155]

    Определение молекулярных параметров двухатомных молекул из инфракрасных колебательно-вращательных спектров [c.163]

    Поглощаемое излучение регистрируется по его длине волны, частоте или волновому числу. Поглощение излучения детектируется электронными приборами и записывается в виде графика. Сильное поглощение в узкой области частот проявляется в записанном спектре в виде острого пика или спектральной линии . Пики поглощения не всегда оказываются узкими и острыми, потому что на каждый колебательный энергетический уровень накладывается целый ряд вращательных энергетических уровней (см. рис. 13-32) вследствие этого каждый колебательный переход в действительности представляет собой наложение друг на друга переходов между многими колебательно-вращательными уровнями. [c.588]

    Для селективного воздействия большое значение имеет возможность перестройки длины волны, излучаемой лазером. В работе [11] описан перестраиваемый импульсный лазер на СОг с поперечным разрядом при атмосферном давлении газа. Средняя выходная мощность варьируется в пределах 0,1-2 МВт/см площадь сечения пучка составляет 8 см . Резонатор этого лазера представляет собой разрядную трубку длиной 2,43 м, по которой прокачивается газ со скоростью 1,4-108 см /ч. В энергетической диаграмме молекул СО2 содержатся два низких колебательных уровня, которым соответствуют волновые числа 1388 и 1286 см 1. В результате колебательно-вращательных переходов эмиссионный спектр содержит линии от 923 до 990 см 1 и от 1023 до 1090 см-1, с помощью дифракционной решетки, размещаемой на конце трубки резонатора, можно настроить излучение лазера на один из необходимых максимумов излучения. [c.100]

    Пусть состояние молекулы выражается точкой Ь в момент электронного перехода. Состояние возбужденной молекулы изобразится точкой 6, лежащей выше т. е. немедленно произойдет ее диссоциация. Все те молекулы, состояние которых выражается точками, лежащими левее прямой Ш, в результате электронного перескока будут диссоциировать в возбужденном состоянии если же состояние молекулы выражается точками справа от /г/г, например точкой с. то после перехода электрона молекула станет возбужденной, перейдя в состояние с без диссоциации. Таким образом, в молекулярных электронно-колебательно-вращательных спектрах возникают полосы и примыкающий к ним сплошной спектр поглощения. [c.73]

    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]

    Кванты более низкой энергии в области 0,5—40 кДж/моль отвечают переходам между колебательными уровнями. При этом неизбежно происходит изменение и вращательных состояний, более низких по энергии, и возникает колебательно-вращательный спектр. Энергия перехода кол-вр и частота линии у в спектре связаны соотношениями  [c.143]

    При сообщении молекуле больших количеств энергии изменяется энергия колебаний атомов в молекуле. Это изменение энергии подчиняется квантовым законам, т. е. колебательная энергия может изменяться только вполне определенными порциями (квантами). При этом поглощается или излучается радиация с частотой В связи с тем, что переход молекул на более высокий колебательный уровень связан обычно с поглощением больших квантов энергии, чем это требуется для изменения ее колебательного движения, на каждое данное колебательное состояние накладывается всегда вращательное. При переходах между различными колебательными уровнями испускается спектр, состоящий из отдельных полос, т. е. колебательно-вращательный спектр. [c.65]


    На этом примере видно преимущество электронных спектров в ИК-спектрах неполярная молекула 1а и ей подобные неактивны, здесь же удается исследовать их диссоциацию, а также определить из колебательно-вращательной структуры молекулярные постоянные (Од, Ге и др. [c.168]

    Вращательным переходам в молекулах отвечают излучения в дальней инфракрасной области спектра. При возникновении этих спектров ввиду малОсти энергетических изменений в молекуле не возникает ни колебательных, ни электронных переходов. Колебательным переходам соответствует излучение в ближней инфракрасной области спектра. При изменении колебательной энергии молекулы всегда изменяется скорость ее вращения обычно при этом образуется колебательно-вращательный спектр. [c.65]

    Колебательно-вращательные спектры. [c.70]

    Это излучение соответствует энергии в несколько электрон-вольт и является ультрафиолетовым, или видимым. Для изменения вращательного и колебательного движения молекул энергии требуется в десятки и сотни раз меньше. Поэтому электронные переходы всегда сопровождаются изменениями в колебательном и вращательном движении, что отражается на спектре, который в этом случае показывает совокупность всех видов энергетических изменений в молекулах и называется электронно-колебательно-вращательным спектром. [c.72]

    Поглощение в ультрафиолетовой и инфракрасной областях. Изменения в колебательной энергии молекул сопровождаются излучением, возникающем в инфракрасной части спектра. Колебатель- ) ные переходы сопровождаются изменениями вращательной энергии, которые дают серию близко расположенных линий. Получаемая при этом колебательно-вращательная полоса излучений расположена обычно В области длин волн 1—23 мкм. В инфракрасной области только этот вид колебаний связан с изменениями дипольного момента. [c.51]

    Практически имеют дело с колебательно-вращательными спектрами. При поглощении молекулой излучения с V < 300 см возникает вращательный спектр, а при воздействии излучения с V = 300—4000 см" происходят изменения как во вращательных, так и в колебательных состояниях молекулы — возникает инфракрасный вращательно-колебательный спектр. [c.137]

    Спектры поглощения в ИК-области связаны с колебательными (колебательно-вращательными) уровнями атомов в молекуле. ИК-Область в общем электромагнитном спектре занимает диапазон 10000—400 см . ИК-Излучение при взаимодействии с молекулой вызывает изменение вращательных и колебательных состояний. По положению в спектре максимумов поглощения (минимумов пропускания) можно установить, какие химические связи имеются в веществе (табл. 171). [c.275]

    При изменении вращательной энергии возникают спектральные линии, расположенные в длинноволновой инфракрасной и в микроволновой областях (А,>50 000 нм). Изменение колебательной энергии обычно связано с одновременным изменением энергии вращения. При этом получают колебательно-вращательный спектр (X от 1000 до 50 000 нм). Изменения энергии электронов связаны с двумя другими составляющими энергии, поэтому полосатый электронный спектр особенно сложен. Он охватывает видимую и ультрафиолетовую области (Л от 50 до 1000 нм). Теоретическая интерпретация этих спектров дана в разд. 6.1. [c.353]

    Структура молекул, установленная при исследовании колебательно-вращательных спектров [c.177]

    П1. Введение времени жизни структурных элементов позволяет использовать в, качестве структурно-кинетической характеристики релаксационный спектр. Он отражает реальное существование в полимерах иерархии, или спектра структур нужно только помнить при этом о двойном усреднении, когда мы хотим описывать системы в статистических терминах. Релаксационный спектр в этом смысле ничем не отличается от привычных — колебательных, вращательных или иных — спектров, знакомых читателю по курсам молекулярной или атомной физики. Как и эти спектры, релаксационный спектр может быть непрерывным, полосатым или (чаще) линейчатым с полосами или их максимумами связаны определенные моды движения, или материальные релаксаторы— те же структурные элементы с двумя временами жизни. На высоких уровнях структурной организации, ввиду двойного усреднения, нецелесообразно давать определенные наименования этим релаксаторам или структурным единицам термин микроблоки достаточно полно характеризует эти единицы как флуктуационные структуры, образованные несколькими (иногда многими) макромолекулами. [c.72]

    Чем объясняется наличие только двух ветвей (Р и ) в полосе колебательно-вращательного спектра двухатомного газа  [c.8]

    Процесс многофотонного возбуждения и диссоциации многоатомных молекул вообще и гексафторида урана в частности до сих пор не имеет достаточно полного теоретического описания из-за недостатка данных о спектре колебательно-вращательных переходов между возбуждёнными колебательными состояниями этих молекул. Наиболее полная информация об этом процессе представлена в монографии B. . Летохова [18]. Особые трудности возникают при объяснении резонансного многофотонного возбуждения молекул из основного состояния в колебательный квазиконтинуум, где спектральная плотность уровней (включая подуровни со снятым вырождением) и число возможных колебательных переходов возрастает настолько, что спектр таких переходов между высоковозбуждёнными состояниями не имеет резкого резонансного характера, свойственного низколежащим переходам (рис. 8.1.7). Трудности вызваны наличием расстроек частоты излучения относительно частот колебательно-вращательных переходов из-за ангармонизма колебаний и распределения молекул по вращательным уровням. Различные подходы к проблеме объединены в три модели  [c.478]

    Вращательная структура колебательно-вращательного спектра. В принятом приближении были рассмотрены вращение и колебание молекулы как независимые друг от друга. Чтобы получить представление о колебательно-вращательном спектре в таком приближении, достаточна модель молекулы как жесткого ротатора и гармонического осциллятора одновременно. Хотя колебание и делает ротатор нежестким, этим можно пренебречь. [c.165]

    Как и для дипольных спектров, колебательно-вращательное взаимодействие может приводить к зависимости в (7) матричных элементлв квадрупольного момента от и. Г.Карл и Д.Полл [3] рассчитали поправку к чисто колебательному матричному элементу <ц 013 ,0>, обусловленную колебательно-вращательным взаимодействием  [c.6]

    Каждый электронный переход вызывает изменение к леба1ель-ного и соответственно вращательного состояния. Хотя гомоядерные двухатомные молекулы не дают чисто колебательных и чисто вращательных спектров, в электронном спектре проявляется вращательная и колебательная структура в виде серий полос, отвечающих электронным переходам. Чем больше поглощенная энергия, тем более сближаются полосы. Возбуждение электронов приводит к возбуждению колебательных состояний и далее к диссоциации молекулы на невозбуждениый и возбужденный атом. Если сообщенная молекуле энергия превышает энергию, необходимую для этого процесса, то избыток ее идет на увеличение кинетической энергии атомов. Спектр поглощения газообразных атомов является непрерывным, поэтому у границы сходимости полос возникает область сплошного поглощения (континуум). Волновое число этой границы гр (также Умакс) определяет энергию перехода от невозбужденной молекулы к атомам, один из которых возбужден. Вычтя из этой энергии энергию электронного возбуждения атома Дбат, получим энергию диссоциации молекулы на невозбужденные атомы Во (рис. XXIX. 5). [c.346]

    Электронные переходы в молекуле определяются ее внутренними движениями, как и в случае атома. При поглощении и излучении молекулами световой энергии, кроме изменения электронного состояния молекулы, происходят изменения колебательного двн>кенця различных частей мо.яекулы и ее вращательного движении в целом. Изменения энергии при электронных переходах имею ] величины, примерно в десять раз превышающие изменения энергии колебательных движений и в тысячу раз превышающие изменения энергии вращательного движения. В соответствии с этш[ электронные переходы чаще всего дают спектры излучения или поглощения в видимой или ультрафиолетовой части спектра. Колебательные и вращательные спектры в соответствии с меньшей величаной изменения энергии проявляются в инфракрасной области На электронные спектры всегда накладывается влияние одновременно происходящих изменений энергии колебательного и вращательного движений, а на колебательные спектры — влияние изменений энергий вращательного движения. В чистом виде проявляются только вращательные спектры (в далекой инфракрасной области). По ним можно вычислить главные моменты инерции молекул и определить их геометрические размеры и конфигурации. [c.91]

    Инфракрасные спектры углеводородов изучают в области основных колебательно-вращательных частот (2,5—25 р, соответ-< твенно 4000—400 см ). Максимумы поглощения отдельных по-шс соответствуют онределенным частотам собственных колебаний молекул. Полосы ноглощения не только характеризуют молекулу в целом, но многие из них характерны также для отдельных атомных группировок внутри молекулы. Часть этих полос пецифична для данного соединения и не повторяется у других шществ другая часть характерна для отдельных структурных олементов и повторяется у всех соединений, имеющих эти струк- урные элементы. Так, все молекулы, содержащие группу СНз, имеют nojio bi с максимумами ноглощения при частотах 2960, 2910, 2850, 1450 и 1380 см . Соединения, содержащие группу СН , имеют полосы с максимумами поглощения 2850, 2880, 2940 и 1470 Соединения, содержащие двойные связи, харак- [c.92]

    Энергия колебательных переходов приблизительно в 10 раз больше энергии вращательных переходов соответствующее им излучение лежит в ближней инфракрасной области. Изменения в колебатель[Юм движении молекулы всегда сопровождаются изме-иенпямн во вращении, поэтому колебательный спектр в отличие ог враи ательиого не может наблюдаться в чистом виде эти спектры всегда накладываются друг на друга, образуя колебательно-вращательный спектр. [c.65]

Рис. ХХ1Х.4. Схема образования колебательно-вращательного спектра Рис. ХХ1Х.4. <a href="/info/18430">Схема образования</a> <a href="/info/3297">колебательно-вращательного</a> спектра
    Инфракрасные спектры молекул — результат энергетических переходов между различными колебательными, вращательными и реже электронными уровнями под действием электромагнитного излучения. Эти переходы значительно различаются по энергиям пр шерно от 0,4 до 140 кДж/моль. Соответственно различают ближнюю ИК-область в диапазоне примерно от 0,8 до 2,5 мкм (12 500—4000 см- ), в которой наблюдаются электронные и колебательные переходы основную или среднюю ИК-область от 2,5 до 16 мкм (4000—625 см ), связанную в основном с колебаниями модекул, и дальнюю, или длинноволновую, ИК-область от 16 до 200 мкм (625—50 см- ), в которой наблюдаются вращательные пе-ре оды, колебания в тяжелых молекулах, в ионных и молекулярных кристаллах, некоторые электронные переходы в твердых тела , крутильные и скелетно-деформационные колебания в сложных молекулах, например в биополимерах. В настоящее время наибольшее развитие получила спектроскопия в средней ИК-области, в ко орой работает большинство серийных приборов. [c.199]

    Все перечисленные выше и ряд других сведений о строении молекул получаются из спектральных данных при помощи разработанной за последние десятилетия теории колебательных и вращательных спектров. Теория относится в равной мере к инфракрасным спектрам и спектрам комбинационного рассеяния и, конечно, не может быть изложена в настоящей главо. Она подробно изложена в монографиях, к которым и отсылаем читателя. Теория вращательных и колебательно-вращательных спектров многоатомных молекул систематически изложена в прекрасной монографии Герцберга [7]. Ряд вопросов теории, особенно методы расчета колебательных частот молекул и упругих электрооптических постоянных межатомных связей, в ьаиболсе полной и совершенной форме развиты в монографии Волькенштейпа, Ельяшевича и Степанова [5] см. также [4, 12, 549а, 559] и обширную библиографию в [7]. [c.483]

    II е г z b е г g G., Р а t а t F., S р i n к s J. W. T. Колебательно-вращательные спектры молекул, содержащих изотоп водорода с массой 2 в фотографируемой инфракрасной области. /. Physik., 1934, 92, 87—99. [c.666]

    S i II h а S. P. Колебательно-вращательные спектры двухатомных и простых многоатомных молекул нри больших толщинах поглощающего слоя. III. Спектр циклопропана (СдНв) от 2,3 до 0,6//. J. СЬеш. Pliys., 1950, 18, Л 2, 217—221. [c.675]

    Колебательно-вращательный спектр называют также ин -фракрасным спектром. Такие спектры очень разнообразны, особенно в случае свободных молекул (в газах при уменьшенном давлении). Разрешающая способность обычного спектрального прибора слишком мала для разделения индивидуальных линий, вызванных вращательными Переходами. При повышении давления или при конденсировании фаз эти линии исчезают, так как продолжительность существования отдельного вращательного состояния настолько сильно изменяется. при соударениях молекул, что наблюдается уширение и перекрывание линий. Спектры в ближней инфракрасной области 1(Л от 1000 до 50 000 нм) обусловлены колебаниями атомов. При этом, различают колебания вдоль валентных связей атомов (валентные) и колебания с изменением валентных углов (деформационные). Колебания возникают, если поглощение электромагнитного излучения связано с изменением направления и величины дипольного момента молекул. Поэтому молекулы, состоящие, например, из двух атомов, не могут давать инфракрасные спектры. Симметричные валентные колебания молекул СОг также нельзя возбудить абсорбцией света. Отдельные группы атомов в молекулах больших размеров дают специфические полосы поглощения, которые практически не зависят от строения остальной части молекулы. Этот факт используЮ Т для идентификац,ии таких групп. В симметричных молекулах колебания одинаковых групп энергетически равноценны и поэтому вызывают появление одной полосы поглощения. По такому упрощению ИК-спектра можно сделать вывод [c.353]


Смотреть страницы где упоминается термин Спектры колебательно-вращательные: [c.65]    [c.162]    [c.166]    [c.666]    [c.669]   
Физическая химия (1978) -- [ c.465 ]

Курс неорганической химии (1963) -- [ c.344 ]

Органическая химия Том 1 (1963) -- [ c.102 , c.103 ]

Общая химия (1968) -- [ c.102 , c.330 ]

Органическая химия Том 1 (1962) -- [ c.102 , c.103 ]

Курс неорганической химии (1972) -- [ c.307 ]

Практикум по физической химии Изд 5 (1986) -- [ c.55 ]

Методы практической биохимии (1978) -- [ c.144 ]

Химия Справочник (2000) -- [ c.470 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-Флека вращательно-колебательных спектро

Вращательная структура линий в колебательных спектрах комбинационного рассеяния

Вращательные уровни энергии, влияние колебательные спектры

Вращательные, колебательно-вращательные и электронноколебательно-вращательные спектры двухатомных молекул

Вращательные, колебательно-вращательные н электронноколебательно-вращательные спектры многоатомных молекул

Вычисление межъядерных расстояний и чао тот собственных колебаний из вращательных и колебательных спектров

Вычисление межъядерных расстояний и частот собственных колебаний из вращательных и колебательных спектров

Г л а в г V- Колебательное движение атомов в молекулах. Колебательные и колебательно-вращательные спектры

Изотопный эффект в колебательно-вращательных спектрах

Изучение вращательно-колебательно-электронного спектра поглощения двухатомных молекул

Изучение вращательно-колебательно-электронных спектров излучения

Изучение вращательно-колебательного спектра метана

Изучение колебательно-вращательного спектра поглощения двухатомных газообразных молекул

Изучение электронно-колебательно-вращательного спектра излучения радикала

Изучение электронно-колебательно-вращательных спектров поглощения фотографическим методом

Колебательно-вращательные спектр двухатомных молекул

Колебательно-вращательные спектр и комбинационное рассеяние

Колебательно-вращательные спектр изотопное влияние

Колебательно-вращательные спектр обертоны

Колебательно-вращательные спектр основная полоса

Колебательно-вращательные спектр правила отбора

Колебательно-вращательные спектр тонкая структура

Колебательно-вращательные спектр частотное разделение

Колебательно-вращательные спектры в инфракрасной области

Колебательно-вращательные спектры многоатомных молекул вращательная и комбинационное рассеяние

Колебательно-вращательные спектры многоатомных молекул вращательная линейных молекул

Колебательно-вращательные спектры многоатомных молекул несимметричных волчков

Колебательно-вращательные спектры многоатомных молекул особые явления

Колебательно-вращательные спектры многоатомных молекул, вращательная структура

Колебательно-вращательные спектры многоатомных сферических молеку Колебательно-вращательные спектры симметричных волчков

Колебательно-вращательные спектры молекул

Колебательно-вращательный спектр СгНв

Колебательные а вращательные спектры. Инфракрасная спектроскопия, спектроскопия комбинационного I рассеяния и микроволновая спектроскопия

Колебательные и вращательные спектры многоатомных молеку

Колебательные молекулярные спект. 3. Вращательно-колебательные спектры

Линейные молекулы колебательно-вращательные спектры

Несимметричные молекулы, вращательно-колебательный спект спектры комбинационного рассеяния

Определение межатомного расстояния и частоты основной полосы поглощения HI по вращательно-колебательному спектру поглощения

Определение молекулярных параметров двухатомных молекул из инфракрасных колебательно-вращательных спектров

Определение момента инерции хлористого водорода по его колебательно-вращательному спектру

Определение термодинамических свойств N на основании вращательно-колебательно-электронного спектра излучения

Определение термодинамических свойств хлористого водорода по вращательно-колебательному спектру поглощения

Переходы между электронно-колебательно-вращательными состояниями двухатомных молекул и правила отбора для спектров испускания, поглоще- J ния, рассеяния

Природа вращательных, колебательных и электронных спектров

Спектр вращательный колебательно-вращательный

Спектр вращательный колебательно-вращательный

Спектр электронно-колебательно-вращательный

Спектры вращательные

Спектры колебательные

Спектры многоатомных молекул колебательно вращательные

Чисто вращательные спектры молекул в возбужденных колебательных состояниях

Экспериментальное определение дисперсионной полуширины в инфракрасных колебательно-вращательных спектрах

Электронно-колебательно-вращательные спектры многоатомных молекул

ветвь в колебательно-вращательных в электронных спектрах



© 2024 chem21.info Реклама на сайте