Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес, методы определения спектроскопический

    Оптико-спектроскопические методы, используемые в промышленном контроле, могут быть разделены на две основные группы электронная спектроскопия (спектроскопия в ультрафиолетовой и видимой областях спектра) и колебательная спектроскопия (спектроскопия в инфракрасной, ближней инфракрасной (ВИК) областях спектра, а также рамановская спектроскопия). В УФ и видимой областях спектра поглощение обусловлено переходами между атомными или молекулярными электронными энергетическими уровнями. Переходы между электронными энергетическими уровнями могут происходить только в том случае, если энергия падающего фотона соответствует разности энергий соответствующих уровней. Эти энергетические уровни для ближней ультрафиолетовой и видимой областей имеются в изолированных атомах, отдельных неорганических ионах, органических соединениях, содержащих сопряженные двойные связи, и большом числе разнообразных молекулярных веществ. Поглощение в ультрафиолетовой и видимой областях очень сильное, поэтому возможно определение концентраций на уровне нескольких частей на миллион. Однако полосы поглощения обычно очень широкие по сравнению с [c.656]


    Величина молекулярной массы, определяемая по количеству концевых групп, зависит от числа молекул полимера и является среднечисловой молекулярной массой. Метод применяется для линейных конденсационных полимеров, которые содержат реакционноспособные функциональные концевые группы ОН, СООН, МНг и др. Так как реакционная способность таких функциональных групп не зависит от молекулярной массы полимера, то для их определения применяют обычные методы анализа функциональных групп. Концевые группы определяют химическими или физическими методами (калориметрическими, спектроскопическими, радиометрическими и др.). Этот метод определения молекулярных масс полимеров наиболее эффективен в пределах 10 —10 . [c.163]

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]

    Первая группа теорий, которая будет рассмотрена впоследствии, содержит общее предположение о том, что макроскопическое ослабление — это кинетический процесс, что составляющие его отдельные акты вызваны термической активацией разрывов вторичных и (или) основных связей и что накопление этих актов приводит к образованию трещины и (или) разрыву нагруженного образца. В рамках этих теоретических представлений основные акты разрушения определяют обычным образом и без привлечения экспериментальных данных связывают с определенными морфологическими изменениями. Вторая группа теорий опирается на явные физические молекулярные повреждения, обнаруживаемые спектроскопическими методами и методом рассеяния рентгеновских лучей, которые будут описаны в гл. 7 и 8. Третья группа теорий, в которой [c.75]

    В ч. 1 рассмотрены общие вопросы химии полимеров, различные методы определения молекулярного веса полимеров и ряд спектроскопических методов исследования макромолекул. [c.4]


    Чрезвычайно удобно находить молекулярную массу масс-спектроскопически, хотя масс-спектрометр — слишком дорогой для этого прибор (см гл 3, разд Масс-спектрометрия ) В последнее время сконструированы автоматические приборы для определения молекулярной массы, основанные на законе Генри, которые фиксируют изменение давления пара растворителя при растворении в нем навески исследуемого вещества Масс-спектрометрическим методом значение молекулярной массы определяется с точностью до 1, а в масс-спектрометрах высокого разрешения — с точностью до 0,0001. Остальные способы дают точность 5—10% [c.22]

    Вообще говоря, перечисленные выше условия часто выполняются в случае данных, полученных с помощью счетчиков для молекулярных кристаллов, содержащих закрепленные объемистые лиганды типа трифенилфосфина. Поскольку эти же лиганды часто используют для стабилизации гидридов переходных металлов, положение координированного водорода в действительности удалось определить во многих рентгеноструктурных исследованиях. Следует подчеркнуть, что очевидная точность этих определений составляет около 0,1 А, так что более тонкие детали взаимодействия металл—водород обнаружить не удается. Кроме того, необходимо отметить, что определяемые расстояния, вероятно, получаются систематически укороченными на 0,1—0,2 А, поскольку при расчетах пренебрегают эффектами связи. При обычном рентгеноструктурном определении длин связей С—И в углеводородах, в которых атомы водорода вносят значительный вклад в рассеяние, получают типичные значения длины связи порядка 0,9 А, что примерно на 0,2 А меньше величины, определенной спектроскопическими методами. Как правило, этот факт объясняют эффектами образования связи. Рассеяние рентгеновских лучей происходит главным образом на электронах атомов. Если в результате образования связи 15-электрон водорода сдвигается в сторону того атома, с которым связан водород, то происходит также и смещение центра рассеяния атома водорода. [c.41]

    Изомеризацию н-пентана в присутствии AI I3 с добавкой uS04- 2НС1 или HGI при О—25° изучали Б. Л. Молдавский и Т. В. Низовкина. Они установили, что процесс сопровождается побочными реакциями крекинга, конденсации, и наряду с изопентанами получается до 30—50% бутанов и 25—40% углеводородов, кипящих выше пентанов. Как правило, с увеличением молекулярного веса нормальных парафинов степень изомеризации закономерно снижается за счет образования продуктов крекинга и вторичных реакций полимеризации, сополимеризации, сильно затрудняющих определение степени самой изомеризации. Однако спектроскопическим методом анализа было точно установлено содержание изомеров в молярных процентах, образующихся из нормальных парафинов при разных температурах [3]. [c.555]

    Результаты химических и спектроскопических исследований полимеров изложены во многих руководствах , в связи с чем в данной книге они не рассматриваются. Методы определения молекулярного веса и формы молекул полимеров изложены подробно в главе XIX. [c.95]

    Образование молекулярных комплексов хлороформа с ди-этиловым эфиром [2] и эфирами полиэтиленгликоля [3] были исследованы методом определения теплот смешения. Аналогичные спектроскопические исследования были проведены с тетра-гидрофураном и дибутиловым эфиром [4]. Энергия водородной связи фенола, нафтолов и пирокатехина с простыми эфирами была определена путем измерения констант равновесия при 20°С и 40 С [5]. [c.229]

    При исследовании высокомолекулярных ароматических соединений применялись методы разделения при помощи фракционирования растворителями, молекулярной перегонки в глубоком вакууме, адсорбционного разделения, а для исследования выделенных узких фракций — определение ряда физико-химических констант, каталитическое гидрирование водородом, спектроскопическое исследование в инфракрасной и ультрафиолетовой частях спектра, метод сопоставления со свойствами индивидуальных углеводородов, а также современные методы определения структурногруппового состава [1—6]. [c.54]

    Масс-спектроскопический метод хорошо дополняет информацию, получаемую с помощью других физических методов. Так, например, УФ-спектр указывает на тип ароматической системы пли сопряженной поглощающей группы ИК-спектр позволяет обнаружить наличие многих функциональных групп спектр ЯМР дает в ряде случаев информацию об окружении этих групп. Детальная интерпретация масс-спектра часто позволяет локализировать эти функциональные группы в определенных местах молекулы и оценить характер их взаимной связи. Кроме того, по данным масс-спектра можно сделать вывод относительно размера и структуры боковых цепей прямое определение молекулярного веса дает значения с точностью до одной единицы массы. [c.231]


    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]

    Ширина линии в спектроскопических измерениях различного типа дает информацию о скоростях молекулярных процессов. Например, метод ядерного магнитного резонанса (ЯМР) можно использовать для определения скорости химической реакции. С этой целью можно использовать также метод электронного парамагнитного резонанса (ЭПР), если химическому превращению подвергается вещество, содержащее неспаренный электрон. [c.286]

    Наряду с качественным определением структуры молекул, ИК-спектроскопия дает возможность полз чать количественные данные о содержании тех или иных групп атомов, связей и их сочетании в молекуле. После определения количественного содержания молекулярных структур, входящих в полимер, находят его состав. Однако по сравнению с другими спектроскопическими методами (электронной и радиоспектроскопией) ИКС обладает в ряде случаев меньшей чувствительностью и точностью, что исключает возможность определения невысокого содержания функциональных групп. [c.225]

    Hoiupta,. В работе осуществлен комплексный подход к решению структурно-аналитических и физико-химических аспектов реакций нефтехимического синтеза на основе спектроскопических, хро-матофафических и химических методов исследования, позволяющий получать качественно новую информацию. Впервые получен комплекс экспериментальных данных структурных, аналитических, кинетических и закономерностей реакций процессов синтеза алкилфенолов и сукцинимидов, которые составили теоретическую базу технологических процессов синтеза алкилфенолов с высокомолекулярными радикалами линейного строения и высокомолекулярных сукцинимидных присадок. Разработаны новые комплексные спектрально-хроматографические методы анализа молекулярных систем в процессах синтеза компонентов поверхностно-активных веществ, присадок, высокочистых полифениловых эфиров, спектроскопические методы определения антиокислительной активности ингибиторов при термоокислении полимеров и энергетических характеристик конформаций вы- [c.8]

    Спектроскопические методы. Если исследуемое соединение можно превратить в производное с высокой интенсивностью поглощения в ультрафиолетовой области спектра (желательно в той области, в которой бесцветные соединения обычно не поглощают), то для определения молекулярного веса может быть использован коэффициент поглощения при выбранной длине волны в области максимального поглощения. Этот коэффициент может быть определен эмпирически но спектрам аналогичных производных с известным значением молекулярного веса. [c.47]

    За исключением вышеупомянутого метода с применением термического размягчения, для определения молекулярной массы и УФ-спектроскопических исследований лигнина (см. 6.4.2) необходимо полностью переводить лигнин в раствор. На растворимость лигнина влияют два параметра растворителя способность к образованию водородных связей и плотность энергии когезии (параметр 26 [c.126]

    Учитывая особое значение для обеспечения взрывобе-зопасности установок данных по растворимости ацетилена в жидком кислороде, во ВНИИкимаше совместно с НИФИ ЛГУ [13, с. 54—60] было проведено определение растворимости ацетилена в жидком кислороде с помощью принципиально иного, спектроскопического, метода исследования. Этот метод определения растворимости заключается в непосредственном определении содержания ацетилена в молекулярном растворе по интенсивности полос поглощения инфракрасного (ИК) излучения. Одновременно с этим было проведено определение растворимости ацетилена еще тремя методами фильтрацией с помощью фильтров, имеющих средний размер пор 0,1—40 мкм отстаиванием простой перегонкой, заключающейся в том, что растворимость определяют с по- [c.87]

    Спектроскопия ядерного магнитного резонанса (ЯМР) -важнейший спектроскопический метод выяснения молекулярной структуры и стереохимии органических соединений. Спектроскопия ЯМР широко применяется в органической, неорганической, металлоорганической, биологической и медицинской химии, где с ее помощью получают детальную ин юр-мацию не только о низкомолЬкулярных соедининиях, но и о синтетических и природных полимерах и макромолекулах. Кроме того, спектроскопия ЯМР находит широкое применение для исследования цутей биосинтеза, химической динамики, а также для непосредственного изучения все большего числа внутриклеточных процессов, целых органов и даже живых организмов. Эта глава, однако, посвящена главным образом определению структуры органических соединений с помощью спектроскопии ЯМР Н и С. [c.79]

    Табулированы и обсуждены имеющиеся данные по физическим и химическим свойствам полимеров изобутилена. Рассмотрены химические свойства и превращения олиго- и полиизобутиленов, которые подразделены на превращения концевых групп двойных связей (реакция присоединения и расщепления) звеньев основной цепи, боковых метильных групп (заместител ьные реакции) и распад основной цепи (деградация, деполимеризация, сшивка). В ряду различных воздействий на полимер проанализированы химические, физические и высокоэнергетические методы воздействия (реагенты и окислители, механохимия, ультразвук, плазма тлеющего разряда, ионизирующие излучения и др.). Особенно выделены направленные превращения полимеров изобутилена, открывающие пути технического применения полимеров изобутилена (каталитическое ионное гидрирование, алкилироваьше фенолов и аминофенолов, каталитическая деполимеризация и некоторые другие). Суммированы аналитические характеристики полиизобутилена спектроскопические (ИК, ЯМР) данные, касающиеся основной цепи и дефектов структуры вязкостные, реологические и молекулярно-массовые параметры их взаимосвязь и методы определения (фракционирование, озонолиз, гель-проникающая хроматография и др.). Совокупное сочетание различных методов обеспечивает высокую степень надежности полученной информации, касающейся аналитических характеристик полиизобутилена. [c.379]

    Различают два вида атомных масс а) атомные массы отдельных иэ топов (их иногда называют массовыми числами) б) атомные мао природных элементов (плеяд)— табличные атомные массы. Onpeflej ние табличных атомных масс стало возможным лишь после того, к бьши разработаны методы определения молекулярных масс. Что к сается массовых чисел отдельных изотопов, то они определяются мае спектроскопически. [c.8]

    Выше было показано, что энергия специфического взаимодействия представляет только часть всей энергии взаимодействия молекул с адсорбентом, приблизительно выражаемой теплотой адсорбции. В изменение спектра основной вклад вносит именно эта энергия специфического молекулярного взаимодействия. Так, смещение поглощения электронного перехода п — я в УФ-области спектра дает величину энергии связи между несвязанными электронами одного партнера и другим взаимодействующим партнером, если не происходит возмущения возбужденного уровня [491. Смещение полосы поглощения колебания, локализованного на какой-либо связи молекулы, также связано с энергией специфического воздействия на эту связь. Однако в настоящее время прямые методы определения энергии этой связи с помощью только спектров еще не разработаны. На основании спектроскопических данных можно определить энергию специфического взаимодействия с помощью корреляционных соотношений между этой энергией и изменениями спектра. Выше отмечалось (см. табл. 2), что для не очень сильных специфических взаимодействий молекул группы В с гидроксильными группами поверхности кремнезема существует приблизительно прямая пропорциональная зависимость между смещением полосы поглощения свободных гидроксильных групп поверхности Ауон и величиной вклада AQ специфических взаимодействий в теплоту адсорбции, определяемой по формуле (2) [17, 57]. Аналогична связь между Av и изменением интенсивности этой полосы [57]. Вследствие уже отмеченной зависимости величины смещения от типа гидроксильной группы количественная связь между Av и А< должна изменяться в зависимости от природы атома скелета адсорбента, к которому прикреплены гидроксильные группы. Так, например, величины Avoн при адсорбции (С2Н5)20 на гидроксилированных поверхностях окиси кремния и окиси алюминия составляют соответственно около 450 и 270 см [5] в согласии с уменьшением кислотности протонного центра при переходе к более амфотерной гидроокиси. [c.145]

    Масс-спектрометрический метод (или метод электронного удара) определения ионизационного потенциала молекулы не может быть применен к перфторпарафинам вследствие неустойчивости молекулярных ионов. Метод электронного удара зависит от точного нахождения точки, в которой энергия ионизирующего электронного луча как раз достаточна для отрыва электрона от молекулы. Этого добиваются, понижая ионизирующее напряжение до тех пор, пока ионный ток не сделается пренебрежимо малым. Шкалу напряжений прибора всегда калибруют при помощи газа, потенциал ионизации которого заранее точно определен спектроскопическим методом. Чаще всего для этой цели пользуются криптоном и аргоном. Оценку потенциала ионизанли производят, измеряя интервал напряжений между исчезновением ионного тока, вызванного ионизирующим газом, и исчезновением тока, обусловленного исследуемыми молекулами. [c.279]

    В работе по проблеме определение молекулярных весов производилось как криоскопическим, так и эбулиоскопическим методами [АНИИП 6-38, 50,64], а при участии других лабораторий также и масс-спектроскопически. Целью этой главы является дать обзор основных принципов криоскопиче-ского и эбулиоскопического методов определения молекулярных весов и показать уже проведенную нами работу в этсй области. Метод определения молекулярных весов с помощью масс-спектрометра здесь но обсуждается. [c.234]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    В большинстве методов определения теплоемкости для достижения наиболее высоких температур используются именно взрывы газовых смесей. Теплоемкости могут быть, однако, вычислены теоретически из спектроскопических данных. Дэвид [45] указывает на то, что в применении к теории горения эти весьма точные теоретические значения следует предпочесть сомнительным экспериментальным данным. Для вычисления температуры пламени и подведения теплового баланса теперь обычно употребляются величины теплоемкостей, найденные из микроскопических молекулярных 1тонстант. Подробности расчета такого рода можно найти у Поста [159 а]. Детальное изложение вопроса о методах вычисления теплоемкостей и других термодинамических величин выходит за рамки настоящей монографии интересующихся отсылаем к книгам по термодинамике. Мы ограничимся здесь лишь самыми краткими сведениями. Согласно классической теории, энергия молекулы при тепловом равновесии распределяется поровну между различными степенями свободы. Полная энергия молекулы складывается из энергии поступательного движения (три степени свободы), вращательной и колебательной энергии, а также в некоторых случаях из энергии электронного возбуждения. Как при комнатной, так и при высоких температурах поступательные и вращательные степени свободы молекулы возбуждены полностью, колебательные же и электронные степени свободы возбуждены не всегда. [c.227]

    Полимеры, полученные из 1,2-диоксиматов металлов, являются неплавкими соединениями. За температуру разложения полимера (табл. 1-2) принята температура начала изменения цвета вещества. Плавления или заметного разложения этих полимеров не наблюдалось. Методом рентгеноструктурного анализа исследована кристалличность некоторых таких полимеров. Низкий молекулярный вес, возможно, обусловлен способностью лигандов [уравнение (У1-8)] к образованию циклических мономеров или димеров. Это предположение подтверждается ИК-спектроскопическим анализом концевых оксимных групп и низкими молекулярными весами, определенными эбуллиоскопически [57]. [c.162]

    В т. I изложены основы химии и физики полимеров, кинетика образования высокомолекулярных веи1естн, физико-химические и механические методы исследования, а также методы переработки полимеров. Рассматриваются реитгеиографи-ческие и спектроскопические способы изучения структуры полимеров, методы определения молекулярных весов, электрофизика высокомолеку-лярны.х соединений. [c.4]

    При исследовании высоко молекулярных ароматических компонентов и смол применялись следующие методы разделения фрак-ционировка растворителями, молекулярная перегонка в глубоком вакууме, адсорбционное разделение, а для исследования выделенных веществ — определение ряда физико-химических констант, каталитическое гидрирование водородом, спектроскопическое исследование в инфракрасной части спектра, метод сопоставления со свойствами индивидуальных углеводородов, а также современные методы определения структурно-группового состава [1—5]. [c.126]

    Традиционный способ пх описания предполагает задание вероятностей всех макромолекул полимерного образца. В разделе II излагается новый подход к описанию молекулярной структуры разветвленных полимеров с помощью задания относительных долей различных фрагментов молекул. Таким фрагментам соответствуют определенные подграфы молекулярных графов. Для увеличения степени детализации описания структуры макромолекул следует включать в рассмотрение подграфы, содержащие все большее число узлов (которые представляют собой мономерные звенья) с соединяющими их ребрами графа (которые отвечают химическим связям). По аналогии с углеводородами многие так называемые структурно-аддитивные свойства полимеров могут быть рассчитаны, исходя из средних чисел различных фрагментов малого размера в макромолекулах. С помощью теории графов удается найти некоторые соотношения топологической стехиометрии, связывающие между собой чпсла различных подграфов. Поскольку доли всевозможных фрагментов разветвленных молекул в настоящее время с достаточной точностью измеряются методами молекулярной снектроскоиии, подобные соотношения оказываются весьма полезными при обработке спектроскопических данных. [c.146]

    С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные исследования заключаются в определении структуры неизвестного соединения, в частности, природных веществ, метаболитов лекарственных препаратов и других ксенобиотиков, синтетических соединений. Масс-спектрометрический анализ дает важную информацию для определения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул. Масс-спектрометрия является наиболее чувствительным спектроскопическим методом молекулярного анализа по сравнению с другими рассмотренными методами, такими, как ЯМР- и ИК-спектроскопия. Для количественного анализа масс-спектрометрию используют при разработке арбитражных методов и методов сравнения, при количественном определении, например, полихлордибензодиоксинов (ПХДД) и наркотических препаратов. Масс-спектрометрия сегодня развивается очень быстро, охватывая все более широкие области применения, например анализ биомакромолекул (разд. 9.4.4). [c.255]

    Структурные изменения при кипении или сублимации. Поскольку о структурах жидкостей известно так мало, фактически нам приходится ограничиться сравнением структур в твердом и парообразном состояниях. В доструктурной эре знание структур паров подтверждалось только молекулярной массой и ее изменением в зависимости от температуры и давления. Благодаря электронной дифракции и спектроскопическим исследованиям разного рода теперь стала довольно доступной богатая информация, устанавливающая связь между межатомными расстояниями и валентными углами в молекулах пара. Эта информация ограничивается главным образом сравнительно простыми молекулами не только потому, что невозможно установить большое число параметров, требуемых для того, чтобы определить геометрию более сложной молекулы из ограниченных экспериментальных данных, но также и потому, что геометрия многих молекул становится промежуточной, если молекулы гибки. (К тому же некоторые методы установления молекулярной структуры подчиняются определенным ограничениям например, микроволновые спектры обычно возникают только от молекул с постоянным дипольным моментом.) Информация о молекуляр- [c.38]

    В предыдущих главах рассматривались основные спектроскопические методы выяснения структуры органических соеди-неиений, базирующиеся на поглощении электромагнитного излучения. Начиная примерно с 1960 г., в дополнение к этим методам все шире используется принципиально иной физический метод - масс-спектрометрия. Основой масс-спектрометрии являются разделение ионов по величинам т/г (отношения массы к заряду) и измерение населенностей (интенсивностей) ионов каждого типа. Популярность метода легко объяснима, поскольку он позволяет определить молекулярную массу и молекулярную формулу практически любого вещества, расходуя ва это ничтожное количество образца.) Кроме того, осколочные ионы несут полезную информацию о структуре изучаемого вещества.- Масс-спектрометрия постоянно развивается как в инструментальном аспекте, так и в отношении методов ионизации, благодаря чему стало возможным регистрировать масс-спектры подавляющего большинства органических веществ, а в последние годы даже высокомолекулярных, термически неустойчивых и нелетучих соединений, например пояи-пептидов и белков с молекулярной массой более 10000. Эта глава посвящена интерпретации масс-спектров и их применению для определения строения органических веществ. [c.176]


Библиография для Молекулярный вес, методы определения спектроскопический: [c.104]   
Смотреть страницы где упоминается термин Молекулярный вес, методы определения спектроскопический: [c.356]    [c.80]    [c.49]    [c.166]    [c.231]    [c.253]    [c.503]    [c.293]    [c.44]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.47 , c.48 , c.150 , c.151 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.47 , c.48 , c.150 , c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Метод спектроскопический

Молекулярная метод Метод молекулярных

Молекулярный вес, определение



© 2024 chem21.info Реклама на сайте