Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодические рисунки

    Повторение мух, бабочек, соколов и летучих мышей на рисунке Эшера (рис. 8-31, а) достигается плоскостями зеркального отражения. На рис. 8-31,6 изображена двумерная пространственная группа ртт и примитивная ячейка ограничена специально выделенными плоскостями зеркального отражения. Симметрия еще одного периодического рисунка Эшера (рис. 8-32) иногда описывается неправильно. С первого взгляда кажется, что точки, в которых сходятся четыре раковины моллюсков и четыре морские звезды, имеют симметрию 4, Однако раковины улиток, расположенные между этими точками, обладают симметрией 2. Настоящие беи 4 можно обнаружить в точках, в которых соприкасаются четыре раковины улиток и четыре морские звезды. Все остальные точки обладают только симметрией 2 без других элементов симметрии [9]. [c.389]


    Периодический рисунок Мамедова Чайки [15]. [c.392]

Рис. 7-3. Полная форма таблицы периодической системы элементов. Если элементы выстроены в один ряд по возрастанию порядкового номера, как это показано в верхней части рисунка, повторяемость сходных химических свойств наталкивает на мысль о возможности построения периодической таблицы складной , длиннопериодной формы, показанной в нижней части рисунка. Все элементы можно подразделить на три категории по степени изменяемости их физических Рис. 7-3. Полная форма <a href="/info/631624">таблицы периодической системы элементов</a>. Если элементы выстроены в один ряд по возрастанию <a href="/info/7331">порядкового номера</a>, как это показано в <a href="/info/1426609">верхней</a> части <a href="/info/1073543">рисунка</a>, повторяемость сходных <a href="/info/71241">химических свойств</a> наталкивает на мысль о возможности построения <a href="/info/96526">периодической таблицы</a> складной , длиннопериодной формы, показанной в <a href="/info/617475">нижней</a> части <a href="/info/1073543">рисунка</a>. Все элементы можно подразделить на три категории по степени изменяемости их физических
    Схема установки приведена на рисунке 2.1. Она состоит из следующих основных узлов реактора окисления, системы конденсации и улавливания парогазовых продуктов реакции и растворителя, системы контроля и регулирования температуры. В качестве реактора используется стеклянный цилиндрический сосуд (1) ёмкостью 500 мл, снабжённый пробоотборником (а), газоподводящей трубкой (б), внутренним холодильником (в), холодильником-конденсатором (г) и турбинной мешалкой (д). Мешалка приводится в действие электромотором (2), соединённым с ЛАТРом (13). Для улучшения перемешивания реактор снабжён отражательными перегородками. Обогрев реактора осуществляется с помощью нихромовой спирали (11), напряжение на которой регулируется ЛАТРом (12). Постоянство температуры поддерживают с точностью 0,5 С контактным термометром (14) управляющим электронным реле (15), которое периодически включает и выключает ЛАТР (12). Внутренний холодильник (в) используют для поддержания постоянства температуры при значительном экзотермическом эффекте реакции. [c.29]

    Несколько повышенные потери карбамида были устранены внесением в схему регенерации промывной фракции некоторых усовершенствований. По измененной схеме предусматривается предварительный отстой и отмывка большей час ги карбамида из промывной фракции до поступления ее на регенерацию. На рис.2.23 (см. стр.105) показана измененная схема регенерации промывной фракции после реконструкции установки. Промывную фракцию подают в отстойники 19 и 20. Отстоявшийся карбамидный раствор и увлеченный им комплекс периодически откачивают в отстойник блока промывки комплекса (на рисунке не показан). Промывную фракцию направляют из отстойника 20 на отмывку в смеситель 21, куда для отмывки из нее карбамида подают "тощий" изопропиловый спирт. [c.109]


    ВИДЕО ИЗ рисунка, с уменьшением продолжительности цикла уменьшаются и амплитуды колебаний температуры катализатора. При длительностях периода колебаний, меньших 13,6 с, система практически не реагировала на периодическое изменение входной температуры и вела себя так же, как и в стационарных условиях при [c.145]

    Кристаллизатор с мешалкой (рис, 14-1) состоит из сосуда /, в котором вращается мешалка 2. Охлаждающий агент (вода или рассол) движется по змеевику 3. Благодаря вращению мешалки выпадающие кристаллы не осаждаются на дне, а остаются в растворе во взвешенном состоянии. Такие кристаллизаторы работают периодически или непрерывно. При периодической работе аппарат заполняют раствором по окончании кристаллизации производят разгрузку аппарата через патрубок 4, имеющий клапан (на рисунке не показан). При непрерывной работе соединяют последовательно несколько аппаратов, при- [c.514]

    На рис. 236 показан аппарат барботажного типа, относящийся к аппаратам с п о с т о я и н ы м объемом жидкости. Он выполнен в виде котла, снабженного паровой рубашкой, барботером и брызгоуловителем. Испаряемая жидкость вводится в аппарат периодически или непрерывно через верхний штуцер (на рисунке нс показан). Газ, непрерывно поступающий в аппарат через барботер 2, насыш,ается парами жидкости и удаляется через брызгоуловитель 3. [c.403]

    Увеличение скорости износа после возникновения рисунка истирания может быть проиллюстрировано на следующем опыте. Два образца одной и той же резины перемещаются по одной и той же поверхности, однако развитие рисунка истирания имеет место лишь, у одного образца. У другого образца образование рисунка истирания было предотвращено периодическим изменением направления износа на 90°. Скорости износа для этих образцов представлены на рис. 13.14 как функции длины пути. Из кривой I видно, что скорость износа при постоянном направлении увеличивается до тех пор, пока не станет постоянной и рисунок не разовьется полностью. Во втором случае (кривая 2 небольшое изменение скорости износа наблюдается лишь на начальных стадиях эксперимента и ее окончательное значение ниже, чем в случае того образца, у которого рисунок истирания сформировался. [c.379]

    Палладий в рекомендованном растворе находится в виде прочного комплексного соединения, поэтому контактно на медной фольге не выделяется. После промывки водой заготовки переносят в раствор для химического меднения (см. табл. 15.2, раствор № I). В процессе меднения образцы, закрепленные на проволочках, периодически покачивают. По окончании меднения (15—20 мин) образцы промывают и переносят в ванну гальванического меднения (табл. 15.2, раствор № 2) для нанесения слоя меди толщиной 3—5 мкм ( затяжка меди в отверстиях). Затем на промытую и высушенную поверхность наносят защитный рисунок через сетчатый трафарет. Для этого образец устанавливают на фиксирующие шпильки трафаретной рамки и накладывают сетчатый трафарет при этом отверстия на заготовке платы должны точно совпадать с площадками на трафарете, защищающими отверстия от попадания в них краски. Защитный рисунок на заготовке получают путем продавливания через сетчатый трафарет с помощью резинового шпателя (ракеля) гальваностойкой краски для трафаретной печати марки СТ-3-13. Затем краску просушивают при 80—90 °С в течение 1,0—1,5 ч. [c.107]

    Аналогичные слоистые структуры широко представлены в природе. В настоящее время хорошо изучены процессы образования слоистых рисунков в некоторых природных минералах (агат, яшма), а также при образовании камней в почках, желчном пузыре и др. Эти структуры возникают в результате ритмических реакций в гелях. Не менее часто встречаются периодические структуры и в растительных организмах. [c.248]

    Наличие пространственной сетки в студнях препятствует перемешиванию. По этой причине химические реакции протекают в студнях с небольшой скоростью, их характер зависит от растворимости продуктов. Если образуются нерастворимые вещества, то они отлагаются слоями в виде окрашенных концентрических колец (колец Лизеганга), разделенных прозрачными прослойками, или в виде более сложных рисунков ( лепестков и т. п.). Такие реакции называют периодическими или ритмическими. Периодические реакции играют большую роль в образовании отложений в тканях живых организмов, геологических процессах. Этими реакциями обусловлены, например, слоистая узорчатость многих минералов, структура камней в почках и печени и т. п. [c.477]

    Применяют частоты 100... 150 кГц. В качестве иммерсионной жидкости используют воду с добавками спирта для лучшего смачивания. Скорости звука в воде и резине очень близки, поэтому преломления звука на границе шины практически не происходит. Для шин с глубоким рисунком протектора возникает периодическое изменение сквозного сигнала, связанное с повышенным затуханием ультразвука в резине. Для устранения этого явления в иммерсионную жидкость вводят добавки, повышающие затухание ультразвука, например уксусную кислоту. [c.221]

    Согласно этому закону, многие свойства элементов являются периодической функцией их атомной массы. Это относится, в частности, к валентности, атомным объемам, потенциалам ионизации и ко многим другим свойствам, например коэффициентам линейного расширения, сжимаемости и др. При этом в ряду элементов, расположенных по возрастанию атомной массы, элементы со сходными свойствами- периодически повторяются (см. рисунок на форзаце). [c.453]


    Тепловые эффекты однотипных процессов являются периодической функцией порядкового номера соответствующего элемента. Для фазовых превращений это показано н а рис. П.З и для химических процессов — на рис. И.4. Из этих рисунков непосредственно следует чувствительность АЯ к степени окисления элементов в соединениях, вследствие чего подчас может существенно нарушиться ход периодичности. В изменении энтальпии по группам периодической системы часто проявляется вторичная периодичность. Рис. П.5 демонстрирует это на примере диоксидов элементов главной подгруппы четвертой [c.87]

    Для того чтобы определить, какой из атомов будет положительным, а какой отрицательным концом диполя, удобно пользоваться шкалой электроотрицательности (рис. 13). В сущности эта шкала представляет собой часть периодической системы, в которой элементы одной группы (на рисунке они соединены пунктирными линиями) расположены, однако, не друг под другом, а по диагонали, [c.82]

    На рис. 38 схематично изображена некоторая часть идеальной (простейшей) кристаллической решетки и указаны периоды идентичности. Как видно на рисунке, элементарная ячейка периодически повторяется в пространстве множество раз при переносе ее на расстояния а, Ь, с ъ направлении данных векторов. Это свойство определяет дальний порядок кристаллической решетки, который характеризуется тем, что любой структурный элемент решетки (например, определенный ион или атом или вся кристаллическая ячейка) встречается выданном направлении через равные интервалы 148, стр. 18Й]. Элементарная ячейка является как бы строительным [c.117]

    Хотя функция i = f n) периодична, однозначной связи между строением электронных оболочек атомов и молярными объемами нет. Одной из важнейших характеристик состояния электронов в атомах являются ионизационные потенциалы атомов. Они определяют энергию связи электронов в атомах и тесно коррелируют со структурой атомной оболочки. Первые ионизационные потенциалы атомов, т, е, характеристики энергии, необходимой для отрыва одного электрона от электрически нейтрального атома, представлены как функции порядкового номера п иа рис. 76. Из рисунка видно, что периодическая зависимость первых ионизационных потенциалов /j от п выражена ярко. Максимумы 1 соответствуют атомам элементов подгруппы гелия, а минимумы — атомам элементов подгруппы лития. [c.263]

    Зависимость характера валентной связи Э—Г от природы образующего данный галид элемента определяется прежде всего его положением в периодической системе. Из рис. ХУ-8 на примере связей Э—Г видно, что переход Э по малому периоду слева направо (вертикальный разрез рисунка) сопровождается быстрым уменьшением полярности связи р. Та же закономерность сохраняется для начал и концов больших периодов. В последних элементы левых подгрупп (ряды аналогов 1—7) всегда характеризуются большей полярностью связи Э—Г, чем соответствующие им элементы правых подгрупп (ряды 11 —17), причем различие проявляется тем резче, чем ниже валентность Э. По мере повышения главного квантового числа п, т. е. при переходе по подгруппе сверху вниз, в рядах аналогов 1—7 происходит закономерное увеличение полярности связи Э—Г, тогда как в рядах 11—17 обычно наблюдается ее максимум для элементов 5 периода. В общем можно сказать, что галогениды с наибольшей полярностью св 1зи отвечают элементам левой и нижней части, а с наименьшей полярностью — элементам правой и верхней части развернутой формы периодической системы. [c.480]

    Сита вращаются по кругу и периодически встряхиваются механическим ударником 4. Направление движения сита показано на рисунке стрелкой. [c.257]

    Периодический рисунок Эшера на основе раковин моллюсков, морских звезд и раковин улиток из книги Мак-Гиллаври [9]. Воспроизводится с разрешения Международного союза кристаллографов. [c.391]

Рис. 30. Процесс в двухступенчатом реакторе смешения (представленные на рисунке прямоугольникп не соответствуют оптимальному выбору) Стрелками указано направление при периодическом проведении процесса Рис. 30. Процесс в <a href="/info/893100">двухступенчатом реакторе</a> смешения (представленные на рисунке прямоугольникп не соответствуют оптимальному выбору) Стрелками указано направление при периодическом проведении процесса
    В экстракционных колоннах капли дисперсной фазы движутся под действием сил тяжести вверх или вниз, в зависимости от того, какая из фаз — дисперсная или сплошная — имеет меньшую плотность. Для расчета экстракторов часто необходимо знать скорость осаждения капель. Зависимость скоростей свободного осаждения капель от их размера обычно имеет вид, показанный на рис. VIII.2. Размер капель d принято характеризовать диаметром сферы равновеликого с каплей объема. Как видно из рисунка, зависимость скорости свободного осаждения от размера капель имеет вид кривой с максимумом. Капли размером d > кр называют осциллирующими . Форма их в процессе осаждения периодически претерпевает изменения. Скорости осаждения осциллирующих капель мало зависят от их размера. [c.137]

    Кремний по многим свойствам похож на бор (диагональное сходство в периодической системе). Оба элемента в виде простых веществ — неметаллы, имеют высокие температуры плавления, образуют кислотные оксиды, ковалентные гидриды, полимерные ок-соанионы. Наиболее отчетливо диагональное сходство кремння с бором видно из зависимости, представленной на рнс. 3.27, свидетельствующей о близости значений (в расчете на 1 эквивалент) сходных соединений этих элементов (прямая на этом рисунке отвечает одинаковому химическому сродству соединений-аналогов). [c.370]

    Схема 1. Качалка (рис. 6.17). Периодические режимы в данной схеме достигаются за счет циклического изменения направления фильтрации реакционной смеси в слое катализатора. Направление фильтрации на рисунке показано сплошными стрелками. Задвижки / открыты, а задвижки 2 закрыты. Входус-щая смесь с низкой начальной температурой нагревается в слое катализатора до температуры начала реакции, в результате по слою распространяется тепловая волна Через время, равное длительности полуцикла Ос/т), тепловая волна щ займет положение 02- В момент времени, соответствующий t /2, задвижки 1 и 2 быстро и одновременно переключают на противоположные. Тогда зона реакции будет двигаться в противоположном направлении. Через время t(. 2 фронт 02 займет положение а, после чего повторяется полный цикл. Температура на выходе из слоя Б течение полуцикла возрастает от входной Гвх до некоторой величины Т вых- [c.317]

    Шоенеман и Гофман показали, что расчет шению (111,22) можно произвести графическим построением на рис. 111-10 приведено такое построение по Шоенеману На этом рисунке кривая 1 [зависимость Р (т) от т] построена на основании экспериментов, кривую 2 (зависимость между степенью превращения и временем реакции в реакторе периодического действия или идеальном трубчатом реакторе) рассчитывают или определяют экспериментально. [c.99]

    После сульфирования ароматических углеводородов смесь парафина с кислым гудроном поступает из мешалки 21 в емкость 22 для предварительного отделения кислого гудрона от парафина. Парафин с верха емкости 22 подают в электроразделитель 23 для дополнительнвго. отделения кислого гудрона. Парафин, со следами кислого гудрона направляют через смеситель 42 в электроразделитель 41. В поток кислого парафина перед смесителем 42 подают циркулирующий раствор щелочи. Щелочные отходы периодически выводят с установки (на"рисунке не показано). Нейтрализованный парафин со следами про- дуктов нейтрализации поступает из алектроразделителя 41 через смеситель 40 в емкость 39, куда одновременно подают паровой конденсат для отмывки парафина. Воду с низа отстойника сбрасывают в канализацию. Влаж-.  [c.117]

    Этот рисунок иллюстрирует три важных общих ноло- ке1шя, характерных для типичной синтетической последовательности. Во-нервых, тот факт, что для успешного движения по заданному пути (от Л к Р) необходима периодическая подкачка в систему свободной энергии, достигаемая в конкретном примере с помощью высоко- [c.44]

    С помощью ЭМА-преобразователей удается возбудить наклонные поперечные волны горизонтальной поляризации, что трудно сделать другими способами. Для этой цели используют пространственно периодическую систему магнитов (рис. 1.29, в). Между магнитами и ОК располагают проводники с переменным током I (один из проводников показан на рисунке). Взаимодействие наведенного тока I с силовыми линиями магнитного поля В приводит к возникновению упругих сил, направленных перпендикулярно плоскости рисунка. Это и требуется для возбуждения наклонных поперечных волн, поляризованных перпендикулярно плоскости преломления. Расстояние между одноименными полюсами магнитов т—Ь та. Разработаны также способы возбуждения горизонтально поляризованных волн с использованием магнитострикцион-ного эффекта. [c.70]

    Этот рисунок иллюстрирует три важных общих положения, характерных для типичной синтетической последовательности, Во-первых, как видно из схемы, для успешного продвижения по показанному маршруту необходима периодическая подкачка свободной энергии, что достигается введением в систему дополнительных регентов 1—Rgt 4. Во-вторых, энергия, запасаемая при этом, может далее расходоваться постепенно, для обеспечения прохождения промежуточных точек (например, С -> О Е), что позволяет контролировать ход превращения. Так, в разобранном синтезе уксусной кислоты свободная энергия, внесенная в систему в виде МеМ Вг, была далее использована в реакциях с диоксидом углерода, а затем с бромоводородом. В-третьих, очевидно, что промежуточные продукты в данной последовательности обладают некоторым избыточным запасом свободной энергии и, следовательно, они потенциально способны свалиться в яму , т.е. превратиться в тупиковые, с точки зрения поставленной цели, соединения. Поэтому очень важно иметь возможность направить по нужному руслу энергию, запасае.мую на стадиях промежуточных продуктов. Вопрос о факторах, определяющих относительную доступность альтернативных каналов реакции рассмотрен в следующем разделе. [c.68]


Смотреть страницы где упоминается термин Периодические рисунки: [c.386]    [c.386]    [c.387]    [c.388]    [c.389]    [c.390]    [c.391]    [c.456]    [c.159]    [c.117]    [c.204]    [c.319]    [c.153]    [c.362]    [c.71]    [c.73]   
Симметрия глазами химика (1989) -- [ c.45 , c.62 , c.393 , c.428 , c.428 , c.458 ]




ПОИСК







© 2025 chem21.info Реклама на сайте