Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомных оболочек структуры

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    Хотя функция i = f n) периодична, однозначной связи между строением электронных оболочек атомов и молярными объемами нет. Одной из важнейших характеристик состояния электронов в атомах являются ионизационные потенциалы атомов. Они определяют энергию связи электронов в атомах и тесно коррелируют со структурой атомной оболочки. Первые ионизационные потенциалы атомов, т, е, характеристики энергии, необходимой для отрыва одного электрона от электрически нейтрального атома, представлены как функции порядкового номера п иа рис. 76. Из рисунка видно, что периодическая зависимость первых ионизационных потенциалов /j от п выражена ярко. Максимумы 1 соответствуют атомам элементов подгруппы гелия, а минимумы — атомам элементов подгруппы лития. [c.263]

    Возникая из выбрасываемых звездами быстро несущихся в пространство атомных ядер и электронного газа, рассеянного между звездами, атомы носят в себе как бы наследственную печать первичного хаоса космических электронов, едва смиряемых центральной силой, исходящей из ядра. Эта сила вызывает орбитальное вращение электронов, взаимно возмущающих друг друга не только в процессе сложного построения правильной слоистой атомной оболочки с ее квантовыми числами, но и в осуществлении многообразных как бы случайных в хаотической основе корреляционных явлений последние неисчерпаемы в многообразии индивидуальных проявлений, по-истине трудно вообразимых по последствиям в мире нескончаемой вереницы различных атомных комбинаций и структур, разнообразно проявляющих себя на этапах элементарных актов и в звеньях цепных процессов, в мире жизненных и психических проявлений. [c.94]

    Заканчивая обсуждение записи энергии кристалла, оценим порядок величины элементов силовой матрицы. Основными силами, стабилизирующими кристаллическую структуру вещества, являются электростатические силы взаимодействия электронов и ядер соседних атомов. При нормальной плотности вещества в указанном взаимодействии принимают участие только так называемые валентные электроны атомов (электроны незаполненных атомных оболочек), число которых обычно невелико (несколько электронов на атом). Поэтому, записывая кулоновскую силу взаимодействия двух атомов, находящихся на расстояниях, сравнимых с размерами электронных орбит их валентных электронов , можно считать, что эффективны электрические заряды порядка величины заряда электрона е. [c.30]

    Прн идентичных условиях коэффициенты распыления для различны,х веществ имеют периодичность, обусловленную их положением в периодической системе элементов и являющуюся следствием периодичности в их теплотах сублимации, строении атомных оболочек и кристаллической структуре. Масса атомов мишени т входит в выражение для коэффициента распыления через коэффициент передачи энергии тМ1(т+Му, где Л1— масса иона. Коэффициенты распыления металлов в твердом и жидком состояниях различаются не очень сильно [50. 51]. Коэффициенты распыления от температуры мишени зависят слабо. Исключение составляет область высоких температур, при которых становится существенным термическое испарение материала мишени в этой области Томпсоном и Нельсоном [52] обнаружены некоторые аномалии. [c.372]


    Когда речь идет об устройстве Мира, простейшей структурой, долгое время считавшейся элементарнейшей, несомненно, является атом. Зная его строение (то, что он состоит из ядра и электронной оболочки, то есть вращающихся вокруг ядра электронов), можно заметить, что атомы демонстрируют две принципиально различные совокупности субатомных частиц нуклоны в ядре напоминают конденсированную среду, а атомные оболочки — газ. В ядре частицы практически соприкасаются друг с другом, а в электронной оболочке находятся далеко друг от друга. Последнее утверждение можно подтвердить оценкой. [c.275]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    Во всех трех случаях наблюдается образование оболочечной структуры капли-кластера, содержащей 2(2i + 1) вырожденных уровней, сгруппированных в полосы (оболочки) с щелями между ними. Наибольшие щели и наибольшее вырождение получаются для гармонического осциллятора. В случае потенциалов Вуда—Саксона и прямоугольной ямы вырождение частично снимается для уровней с большим орбитальным числом и появляются подоболочки. Это обстоятельство весьма важно для характеристики кластерной оболочечной модели ядра, а также для кластерной атомной модели, включающей большое число атомов (о чем речь пойдет далее). Оболочечная модель ядра имеет, однако, отличия от атома в получении реальных моментов ядер. Для ядер работает правило четного и нечетного числа нуклонов, когда угловой момент всего нечетного ядра определяется одним добавочным сверх четной структуры ядра нуклоном. Правила Гунда для заполнения атомной оболочки диктуют получение больших угловых моментов, что связано с кулоновским отталкиванием электронов, которое уменьшается для электронов с параллельными спинами. Для нуклонов в ядре, кроме общего постоянного притяжения, существует еще парное притяжение, которое максимально при противоположном направлении спинов нуклонов. Тогда ядра, включающие четные числа нуклонов, обладают нулевым спином. [c.214]

    Результат исследования регистрируется в виде кривой поглощения (рис. 94), которая выражает зависимость поглощения излучения от напряженности магнитного поля. Спиновые переходы ядра зависят от состояния электронной оболочки атома. Поэтому разные молекулы и разные атомные группировки в них поглощают при разной напряженности магнитного поля. Анализ формы и положения пиков на кривой поглощения позволяет делать заключение о структуре соединений. Так, анализ кривой поглощения этилового спирта показывает, что пики (рис. 94) отвечают спиновым переходам протонов соответственно атомных группировок СНз, СНг и ОН. Таким путем подтверждается строение молекулы С2Н5ОН. [c.147]

    Атом углерода, имеющий во внешней оболочке 4 электрона, отличается от других атомов постоянной валентностью, так как он не вносит в электронную структуру молекулы ни неподеленных пар электронбв, йи вакантных низколежащих орбиталей. Поэтому молекулы его соединений не способны к образованию донорно-акцепторных связей с другими молекулами через атом углерода В то же время между атомами С могут возникать прочные связи, так как малые размеры электронной оболочки благоприятствуют хорошему перекрыванию атомных орбита-лей углерода. Благодаря этому углерод обладает уникальной способностью образовывать из одинаковых атомов длинные цепочки, составляющие углеродный скелет бесчисленных молекул органических веществ. Указанные свойства углеродного атома привели к выделению химии его соединений в особую науку — органическую химию. Рассмотрим особенности строения молекул и электронной структуры некоторых родоначальников важнейших классов органических соединений. [c.204]


    В непереходных металлах атомные ядра, как, например, Ка + или А1 (структура Ые), обладающие заполненной оболочкой, являются очень устойчивыми и химически инертными системами, и единственный тип ожидаемой реакции — это переход валентных электронов [c.31]

    Вот на этот вопрос я и попытаюсь ответить в настоящей работе. Но сначала несколько слов по высказыванию С. А. Щукарева. Сказанное им не только наводит на размышления, но и вызывает желание поспорить с ним. Что касается "бездонной глубины задачи , то здесь больше чувственного, чем научно-аналитического. И такой подход свойственен не только ему. Многие ученые готовы распространить периодическую законность в самую глубину ядра атома. В то время как известно, что химические свойства атомов, в том числе и их периодическая повторяемость, являются следствием только структуры электронной оболочки. Тем самым проводится отграни читальная черта между двумя уровнями организации материи — атомным и нуклонным. Следовательно, Постижение полного смысла системы элементов должно закончиться рамками этой системы, этого уровня организации материи. На каждом уровне свои системные закономерности, свои законы развития, хотя в чем-то и сходные с другими уровнями. Согласившись с таким подходом, не составит [c.143]

    Таким качественным скачком стало познание строения атома и, как следствие, познание физической причины повторяемости свойств химических элементов. Как теперь известно, она зависит от повторяемости в строении электронной оболочки атома, а не от атомного веса, как считал Д. И. Менделеев и его современники. Было установлено, что повторяемость свойств от периода к периоду является зеркальным отображением структуры электронной оболочки от квантового слоя к слою. Оказалось, что этим повторяемость не ограничивается кроме квантовых слоев в электронной оболочке есть еще и подслои. Они тоже вызывают повторяемость химических свойств уже внутри периодов системы. Табличная модель системы уже не была в состоянии отражать наглядно эти вторичные виды повторяемости, а формулировка Периодического закона не была адекватной смыслу явления. [c.148]

    Современная теория строения атомов и молекул неопровержимо свидетельствует о том, что основой периодического закона является строение электронных оболочек атомов химических элементов. Важнейшая химическая характеристика элементов главных подгрупп — валентность атомов — определяется структурой внешнего электронного слоя, конкретнее — числом неспаренных электронов. Строго обусловленные причины предопределяют периодичность заполнения электронных уровней в атомах с увеличением атомного номера, т. е. с возрастанием числа электронов. Это в свою очередь обусловливает периодическое изменение числа неспаренных элект  [c.18]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]

    Изучение структуры электронных слоев атома показало, что периодическое изменение свойств атомов элементов происходит вследствие периодического возвраш,ения к однотипным электронным группировкам в оболочках атомов. С увеличением зарядов атомных [c.83]

    Переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом решающую роль играют электроны, находящие- [c.84]

    На какие вопросы должна ответить теория строения электронной оболочки атома Вот некоторые из них почему спектр одиоатом-ного газа имеет линейчатый характер и его структура зависит от атомного номера элемента Почему энергия последовательной ионизации атома имеет дискретные значения Чем определяется периодическая зависимость изменения энергии ионизации, сродства к электрону, радиуса атомов от атомного номера элементов Почему атомы способны образовывать химическую связь и химические свойства элементов подчиняются периодическому закону  [c.17]

    Переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом решающую роль играют электроны, находящиеся на наружном электронном уровне атома или на уровнях, близких к наружному, так называемые валентные электроны. [c.110]

    Рассмотрим прежде всего переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом главную роль играют электроны, находящиеся на внешнем электронном уровне атома. Электроны внешнего энергетического уровня являются валентными. Состав внешнего энергетического уровня атома элементов периодической системы с возрастанием порядкового номер а изменяется периодически. [c.191]

    Химические свойства электронов и характер их атомных спектров также периодически повторяются. Сама структура таблицы Менделеева определяется строением внешних электронных оболочек атомов. [c.37]

    Постоянство структуры характерно не только для целой молекулы, но и для отдельных атомных групп, которые могут входить в состав разных молекул. Например, нитрогруппа —NO2 имеет вполне определенное строение, т. е. расстояние между атомами, валентные углы, строение внешних электронных оболочек остаются примерно постоянными, пока другие группы, входящие в состав молекулы, взаимодействуют с ней сравнительно слабо. Это очень важно для аналитических целей, так как спектр, обусловленный присутствием в молекуле вещества определенных групп, мало зависит от строения остальной части молекулы, если каждая такая группа сохраняет свою индивидуальность. [c.285]

    Дм Т. цинка, d, Hg характерно явление политипии и в зависимости от условий они кристаллизуются в кубич. структуре типа сфалерита или гексагональной типа вюрци-m Наим, число Т. характерно для переходных металлов с относительно устойчивыми d - и rf -конфигурациями атомных оболочек. Напр., Сг, Мп и Re образуют не более двух Т., а Ag, Au, Zn, d, Hg-по одному (AgjTe, AuT j, dTe и т.д.). По мере увеличения содержания Те характер хим. [c.516]

    Для объяснения отличия валентных углов в молекулах НзО и ЫНз от 90° следует принять во внимание, что устойчивому состоянию молекулы отвечает такая ее геометрическая структура и такое пространственное расположение электронных облаков внеп, -ннх оболочек атомов, которым отвечает наименьпшя потенциальная энергия молекулы. Это приводит к тому, что при образовании молекулы формы и взаимное расположение атомных электронных облаков изменяются по сравнению с их формами и взаимным расположением в свободных атомах. В результате достигается более полное перекрывание валентных электронных облаков и, следовательно, образование более прочных ковалентных связей. В рамках метода валентных связей такая перестройка электронной [c.135]

    Простое правило, описывающее атомные структуры (в общих чертах, без учета провалов электронов), было найдено В. М. Клечковским заполнение электронных оболо чек в атомах элементов происходит в порядке возрастания суммы квантовых чисел /г + / при равенстве этих сумм для двух оболочек сначала заполняется оболочка с меньшим значением п. [c.40]

    Как отмечает В. И. Кузнецов [17] Даже при беглом в гляде на состав химических соединений мы убеждаемся, что атомность только в исключительных случаях, прежде всего для кислорода, водорода и фтора, неизменна. Элементарные атомы часто проявляют к положительным элементам другую атомность, чем к отрицательным . Это очень важное замечание. Оно побуждает к иному объяснению природы валентности, так как взаимодействуют не только положительный атом с отрицательным атомом. Взаимодействуют друг с другом и однознаковые атомы, что, казалось бы, ломает все предписанные им Периодической системой правила поведения . Э го кажущееся противоречие снимается, как только мы переходим к рассмотрению химической связи на электронном уровне. Решающим фактором здесь является относительная электронодонорность атомов, участвующих во взаимодействии. При взаимодействии двух однозначных атомов в каче-стие положительного будет выступать тот, электронодонорность которого вьш1е, т. е. электроны внешнего слоя (слоев) подвижнее. А это, в свою очередь, зависит от типа внешнего слоя (слоев) в структуре электронной оболочки, что и является нсриопричиной структуры системы химических элемен-юн. [c.175]

    Очевидно, что модель независимых частиц схематична. В ней утрачены многие детали атомных спектров. Как и всякое приближение, она имеет свою область применимости. В то же время она содержит мощный параметр (экранирующий потенциал), подбирая который можно воспроизвести те или иные характеристики атома. В целом модель независимых частиц охватывает основные черты электронной структуры атомов. Именно поэтому возникающие в ней понятия, такие, как спинюрби-таль, оболочка, орбитальная энергия, конфигурация, само понятие одноэлектронного приближения сохраняются во всех более реалистичных приближениях. [c.125]

    Поэтому структурная организация полимеров лишь на первый взгляд моделируется по аналогии с обычными тве рдыми телами, т. е. как сложная система, в которой можно выделить ряд главных подсистем (кристаллическая решетка в целом, элементарная ячейка, узлы, молекулы (или ионы), атомные ядра, их электронные оболочки и т. д.). В случае полимеров даже при наличии кристаллической решетки есть одна действительно главная подсистема — макромолекула, представляющая собой линейно-периодическую структуру из большого числа элементов — повторяющихся звеньев цепи автоматически это порождает в макроскопической системе, безотносительно к тому, обладает ли она собственной периодической упорядоченностью (кристалличностью), некие особые направления, где вместо вандерваальсовых сил действуют химические связи. [c.10]

    Если длина волны близка по порядку величины размерам молекул и расстояниям между ними, то наблюдается известная интерференционная картина, изучение которой позволяет получить ценные сведения о структуре вещества. Рентгеновские лучи и электроны рассеиваются на электронных оболочках атомов, причем в первом случае (рентгеновские лучи) главную роль играют максимумы электронной плотности, а во втором случае (пучки электронов) — неоднородность электрического поля вблизи атомных ядер. Рентгеновский метод наиболее ценен при определении структуры кристаллических соединений (его основы рассматриваются в разд. 6.4.1). Здесь обсуждают только наиболее существенные аспекты определения строения отдельных молекул с помощью дифракционных методов. Строение молекулы можно установить вполне однозначно, если получить дифракционную картину вещества в газовой фазе (пар). Однако из-за низкой плотности рассеивающей среды для получения дифракционной картины в рентгеновских лучах необходима экспозиция в течение многих часов, а для получения элект-ронограммы — в течение нескольких секунд. Поэтому для исследования молекул в газовой фазе применяется преимущественно метод электронографии. [c.74]

    Переход количественных изменений в качественные находит отражение в том, что в результате нарастания атомной массы элементов ио периодам, увеличения Z и числа валентных электронов в оболочке свойства элементов изменяются от типично металлических до типично неметаллических. Это наглядный пример перехода количественных изменений в качественные, причем в периодах он совершается посредством постепенно-скачкообразного от-рицания предыдущих качеств элементов. Резкий скачкообразный переход к следующему периоду есть акт отрицания отрицания п[)оисходит возврат к свойствам щелочного металла, но уже на новой высшей ступени развития (формирования) структуры атома. В. И. Ленин указывал, что отрицание чего-либо надо рассматривать, как момент связи, как момент развития, с удержанием положительного .  [c.93]

    Одной из наиболее ценных идей, которая, по-видимому, должна быть введена в стереохимию вслед за первыми применениями теории валентной связи, является утверждение, что при определении структур молекул соединений непереходных элементов не-тюделенные, или свободные пары электронов так же важны, как и связывающие пары. Однако следует отметить, что при определении стереохимии соединений переходных элементов свободные пары, вероятно, не играют такой же роли, как в случае непереходных элементов. У атомов переходных элементов свободные пары и одиночные неспаренные электроны находятся в предпоследнем п — 1) -подуровне, т., е. на негибридных металлических атомных орбиталях, тогда как у непереходных элементов они расположены на внешнем квантовом уровне, т. е. на гибридных орбиталях. Действительно, октаэдрическая конфигурация комплексов переходных металлов не зависит от числа несвязывающих электронов. Так, ион Мо(СМ)б имеет додекаэдрическую форму несмотря на то, что валентная оболочка атома молибдена содержит девять электронных пар. [c.199]

    Причиной медленного изменения авойств химических элементов, послужившего основанием для объединения их в одной клетке периодической системы, как теперь известно, является сохранение состава и строения наружной электронной оболочки при последовательном увеличении атомного номера элемента и соответственно общего числа электронов в изолированном атоме, а также, как следствие, очень малое изменение размеров атомов и одноименных ионов при переходе от одного элемента к другому. Действительно, как показывает табл. 1.15, элементы триад VIII группы периодической системы сохраняют неизменной структуру наружных электронных оболочек (главное квантовое число /2 = 4 5 6), достраивается (при росте атомного номера) соответствующий ii-подуровень п — 1 электронный слой), степень заполнения которого не оказывает определяющего влияния а размеры атомов и ионов, а также на свойст1ва соединений, если они построены за счет преимущественно ионной химической связи. [c.111]

    Интересно, что тяжелые аналоги элементов-неметаллов — фосфор, сера, в отличие от азота и кислорода дающих локальные молекулы с кратными связями, образуют простые вещества, построенные за счет одинарных связей (например, одинарные связи Р—Р, 5—5 в молекулах Р4, 5в). Невыгодность образования кратных связей у фосфора, серы и их тяжелых аналогов объясняется уменьшением прочности таких связей по мере увеличения размеров атома (по сравнению с легкими аналогами). Это связано с уменьшением я-перекрывания орбиталей по мере роста их протяжснности, с увеличением электронного отталкивания при образовании кратных связей в условиях большого числа электронов. В то же время прочность одинарных связей неметалл—неметалл в группах при переходе от самых легких к более тяжелым элементам-аналогам увеличивается. Согласно современным данным [2] энергия одинарной связи О—О и N—N примерно на 100 ккал/моль меньше, чем энергия связи 5—5 и Р—Р соответственно. Однако возникающие при этом структуры отличаются от алмазоподобных и принадлежат к числу молекулярных. Это связано с несклонностью электронных оболочек атомов тяжелых неметаллов к 5р -гиб-ридизации (большое число электронных оболочек, удаленность наружных электронных слоев от атомного ядра). [c.249]


Смотреть страницы где упоминается термин Атомных оболочек структуры: [c.319]    [c.319]    [c.63]    [c.89]    [c.7]    [c.535]    [c.17]    [c.90]    [c.583]    [c.147]    [c.296]    [c.345]    [c.83]    [c.411]    [c.230]   
Химия в атомной технологии (1967) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная оболочка

Оболочка

Структура атомная



© 2025 chem21.info Реклама на сайте