Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидриды ковалентные

    Донорно-акцепторный механизм образования ковалентной связи. Кроме изложенного выше (стр. 57), мыслим и другой механизм образования молекулы водорода. А именно— взаимодействие разноименно заряженных ионов — протона Н+ и отрицательного иона водорода Н-, называемого гидрид-ионом  [c.60]

    Гидриды неметаллов. Соединения неметаллических элементов с водородом, в которых степень окисления водорода -f-I, называют гидридами неметаллов. Гидриды многих неметаллов газообразны, имеют ковалентный тип связей в молекулах. В подгруппах периодической системы с увеличением порядкового номера элемента стандартная энергия Гиббс-а образования гидридов неметаллов возрастает (рис. 79). Следовательно, уменьшаются химическое сродство между водородом и неметаллическими элементами и устойчивость молекул гидридов. Из гидридов галогенов — галогеноводородов — наиболее устойчивы молекулы HF, заметная диссоциация которых на атомы не наблюда- [c.236]


    Сходство между элементами одной группы становится еще менее очевидным в группе 1УА. Углерод представляет собой неметалл, который почти всегда образует четыре ковалентные связи с другими элементами. Его атомы полимеризуются в цепи, давая так называемые органические соединения, и могут образовывать друг с другом не только простые, но и кратные ковалентные связи. Кремний-неметалл, обладающий некоторыми металлическими свойствами, включая серебристый блеск. Он образует ограниченное число гидридов, называемых силанами, которые являются аналогами углеводородов и имеют общую формулу 51 Н2 + 2- Но такие цепи ограничены предельным значением х = 6, и даже силаны с низкой молекулярной массой реагируют с галогенами и кислородом со взрывом. Кремний образует еще один класс полимеров-силоксаны, в которых атомы 81 связаны через мостиковые атомы кислорода  [c.454]

    Итак, в соответствии с типами химической связи и проявляемыми свойствами гидриды по строению и свойствам могут быть разделены на 4 основных класса ионные солеобразные гидриды ковалентные гидриды гидриды с мостиковой водородной связью и гидриды переходных металлов с металлической связью. Кроме того, могут быть выделены промежуточные гидриды. К последним относятся гидриды элементов подгрупп 1В и ИВ, которые являются нестойкими соединениями, обладают в какой-то степени летучестью и по строению и свойствам занимают промежуточное [c.19]

    Каждый атом В образует две обычные двухцентровые ковалентные связи В—Н, в которых занято всего восемь электронов. Остающиеся у диборана четыре валентных электрона используются для образования двух трехцентровых связей В—Н—В, в которых каждый из трех атомов поставляет по одной орбитали в связывающую молекулярную орбиталь. Представление о трехцентровых связях позволяет объяснить строение всех гидридов бора. Кроме того, оно объясняет, почему бор неспособен к проявлению таких химических свойств, как углерод. [c.272]

    Ковалентные гидридобораты относятся к смешанным гидридам. В отличие от ионных они так же реакционноспособны, как и гидриды бора, например взрывают на воздухе. [c.518]

    На примере гидридов и оксидов типических элементов хорошо иллюстрируется корреляция между валентностью и номером группы элемента. Элементы, расположенные в левом нижнем углу периодической системы, представляют собой металлы. Они образуют ионные гидриды и оксиды, водные растворы которых обладают основными свойствами. Элементы, расположенные в верхнем правом углу периодической системы, являются неметаллами. Их соединения с водородом и оксиды представляют собой небольщие молекулы с ковалентными связями при нормальных условиях они существуют в форме жидкостей или газов и проявляют кйслотные свойства. В промежуточной части периодической таблицы между ее верхним правым и нижним левым углами находятся элементы, которые обнаруживают постепенно изменяющиеся свойства. По мере перехода от неметаллических элементов к семиметаллическим и далее к металлам их соединения с водородом становятся вместо кислотных инертными или нейтральными и далее основными (хотя эта общая закономерность осложняется многими отклонениями), а оксиды переходят более закономерным образом от кислотных к амфотерным и далее к основным. [c.323]


    В ряду Се — РЬ наблюдается усиление металлических свойств -и уменьшение доли ковалентной связи в соединениях. Поэтому уменьшается устойчивость ковалентных гидридов ЭН . [c.381]

    К ковалентным относятся гидриды менее электроотрицательных, чем сам водород, неметаллических элементов. К ковалентным отно- [c.290]

    Гидриды металлов. В гидридах металлов степень окисления водорода —1. Гидриды металлов классифицируют на основе периодической системы элементов и типа химической связи на ионные, металлические и ковалентные. [c.238]

    Гидриды. Гидридами называют соединения элементов с водородом, в которых последний играет роль электроотрицательного элемента (окислительное число водорода в этих соединениях —1). По своему характеру гидриды элементов разделяются на три группы. Первую составляют гидриды щелочных и щелочноземельных металлов, образованные ионной связью. Вторую — гидриды элементов побочных подгрупп периодической системы, которые имеют интерметаллидный характер. Наконец, третья группа охватывает гидриды элементов П1А-, IVA- и VA- подгрупп с ковалентным типом связи. [c.61]

    Связь водорода с другими элементами в зависимости от их электроотрицательности носит более или менее полярный характер (рис. В.17), что может служить основой для классификации бинарных гидридов. Вследствие того что водород находится примерно в середине шкалы электроотрицательности, он образует как ковалентные, так и ионные соединения (рис. Б. 17), а также соединения промежуточных типов. Особый класс составляют соединения включения водорода с металлами (разд. 36.16.1). [c.461]

    Водород образует с другими р-элементами ковалентные соединения, формально не относящиеся к гидридам СН4, NH3, РНз, Н2О, H2S, НС1 и др. По физическим свойствам они при условиях, близких к нормальным, являются газами или легко испаряющимися жидкостями, поэтому иногда называются летучими гидридами. В этих соединениях степень окисления водорода -1-1, а характер химической связи меняется от малополярной ковалентной до полярной ковалентной. [c.344]

    Донор, следовательно,— это атомно-молекулярная структура, отдающая электронную пару, акцептор — структура, принимающая пару электронов на свободную орбиталь. Электронная пара в поле двух ядер у них общая, что характерно для ковалентной связи, описываемой методом ВС. Так, молекулу На можно получить при взаимодействии гидрид-иона (донора) и протона (акцептора)  [c.106]

    Гидриды бериллия и магния не являются ионными кристаллами, а состоят из высокополимерных молекул (MHa) образуют переход между ионными и ковалентными гидридами. [c.261]

    Ковалентные гидриды применяют для получения особо чистых веществ (термическое разложение). [c.239]

    Гидриды элементов 1 У А-подгруппы имеют состав ЭН4, а УА-подгруппы — ЭНз- Гидриды этих элементов отличаются тем, что связь между атомами в них ковалентная. Они представляют собой летучие и горючие вещества. Легко реагируют со многими окислителями. [c.62]

    Полинг показал, что предположение об аддитивности нормальных ковалентных связей соблюдается для большого числа простых свя зей, и использовал величины А, полученные из уравнения (4-7), для составления обширной таблицы электроотрицательности эле ментов. Несоблюдение аддитивности в некоторых случаях, в част ности для гидридов щелочных металлов, заставило Полинга заменить в уравнении (4-7) среднее арифметическое средним гео метрическим i [c.123]

    Расстояния М—Н в гидридах переходных металлов близки к сумме ковалентных радиусов атомов. Для первого ряда переходных металлов они составляют 0,14—0,17 нм, тогда как ионный радиус гидрид-иона в системе Гольдшмидта 0,154 нм. [c.93]

    Кислотные гидриды — ковалентные газообразные соединения водорода с неметаллами, которые имеют меньшую электроотрицательность. Их гидролиз протекает с образованием кислоты и свободного водорода, как показано на приведенном выше примере с 51Н4. Продукты взаимодействия основных и кислотных гидридов можно рассматривать как комплексные гидриды, например МаН-БНз или Ма[ВН4] — тетрагидроборанат натрия. [c.62]

    В гидридах переходных металлов, среди которых 3 служит лишь одним примером, связь металл — гидрид ковалентная и заметно неполярна, хотя в определенных гидридных карбонильных комплексах, таких как РеН2(СО)4, стабильность металлкарбониль-ного аниона, т. е. [РеН(С0)4] или [Ре (СО) 4] -, может делать гидридный атом до некоторой степени кислотным [7]. [c.13]

    К ковалентным относятся гидриды менее электроотрицательных, чем сам водород, неметаллических элементов. К ковалентным относятся, например, гидриды состава SIH4 и ВНд. По химической природе гидриды неметаллов являются кислотными соединениями. [c.276]

    В противоположность 1ЮННЫМ ковалентные тетрагидридобораты типа А1(ВН4)з (т. пл. —64,5°С, т. кип. 44,5°С), Ве(ВН4)2 (т. возг. 91"С) летучи, легкоплавки. В этих гидридоборатах (поскольку имеется дефицит электронов) связь между внешней и внутренней сферами осуществляется за счет трехцентровых связей. Таким образом, эти соединения являются смешанными гидридами. В гидридоборатах же щелочных и щелочноземельных металлов (низкие энергии ионизации) дефицит электронов устраняется за счет перехода электронов атома 11еталла к радикалу ВН4, т. е. в этом случае связь между внешней и знутренней сферами становится преимущественно ионной  [c.444]


    Кремний по многим свойствам похож на бор (диагональное сходство в периодической системе). Оба элемента в виде простых веществ — неметаллы, имеют высокие температуры плавления, образуют кислотные оксиды, ковалентные гидриды, полимерные ок-соанионы. Наиболее отчетливо диагональное сходство кремння с бором видно из зависимости, представленной на рнс. 3.27, свидетельствующей о близости значений (в расчете на 1 эквивалент) сходных соединений этих элементов (прямая на этом рисунке отвечает одинаковому химическому сродству соединений-аналогов). [c.370]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]

    Соединения водорода могут быть подразделены на три боль< шне группы солеподобные гидриды активных металлов (LiH, СаНа и др.), ковалентные водородные соединения р-элементов (ВгНб, СН4, ЫНз, НаО, HF и др.) и металлоподобные фазы, образуемые d- и /-элементами последние обычно являются нестехио-метрическими соединениями и часто трудно решить, относить ли их к индивидуальным соединениям или твердым растворам (например, гидрид титана состава TiHi.eo ч-а,оо)- Известны также соединения, занимающие промежуточное положение между указанными тремя группами. [c.466]

    Гидриды щелочных и щелочноземельных металлов — это твердые соединения, связь в которых близка к иоиной. Летучие водородные соедин(Гния В и элементов подгрупп IVA—VIIA газообразны в них связь близка к ковалентной. Многие гидриды элементов [c.466]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Г идриды элементов IVA-подгруипы имеют состав ЭН4, а VA-подгруипы ЭПз. Гидриды этих элемеитоз отличаются тем, что связ ) между атомами в них ковалентная, это летучие и горючие вещества. Они легко реагируют со многими окислителями. [c.124]

    Хотя налицо все факторы, благоприятствующие изменению структуры, система предпочитает сохранить ароматичность. Следовательно, образование NADH должно управляться конформацион-ными изменениями, которые смещают равновесие в сторону неароматической системы. Однако внутримолекулярный перенос гидрида наблюдался [276] в присутствии лактатдегидрогена.яы из сердца свиньи с использованием кофермент-субстратного ковалентного аналога, состоящего из лактата и NAD+. [c.403]

    Ясно, что никакого гидридного переноса ме проиеходит, смещается только протон и образуется ковалентное промежуточное соединение между субстратом и положением 4а FAD. Гамильтон считает, что биологические окислительно-восстановительные реакции (дегидратации) редко протекают с участием гидрид-ионов (если вообще такой механизм возможен), так как протоны н имеют электронной оболочки и поэтому движутся гораздо быстрее и более эффективны в биологических средах [279]. [c.415]

    Наряду с солеобразными и ковалентными гидридами (разд. 35.1.1.1) существуют соединения водорода, так называемые металлические гидриды , образуемые переходными элементами. В них водород тем или иным образом внедрен в рещетку к1еталла. Часто при этом не образуется стехиометрических соединений и в системе М — Н имеют место весьма сложные фазовые соотношения. Ниже в качестве примера приведены данные для системы гафний — водород  [c.644]

    Соединения водорода. По значению своей электроотрицательности водород близок к фосфору (см. табл. 4.2). Поэтому следовало бы ожидать образования гидридов (соединений со степенью окисления водорода -1) многих металлов, кремния и бора. На самом деле известны солеобразные гидриды для щелочных и щелочноземельных элементов (твердые LiH, СаНг и др.), ковалентные (газообразные SiH4, ВгНе) и металлоподобные. В последнем случае еще не ясно, являются ли они индивидуальными соединениями d- и /-элементов с водородом, или это твердые растворы. [c.344]

    Из тех данных, с которыми мы познакомились при характеристике типов связи, следует, что специфика химической связи является важнейшим фактором, определяющим физико-химические свойства веществ (см. 5.10). Так, комплекс свойств металлических тел глубоко взаимосвязан с металлической связью. Многие свойства сплавов и соединений металлов d- и /-элементов (гидридов, бори-дов, карбидов, нитридов, оксидов и др.) не могут рассматриваться без учета возможной у них доли металлической связи. Сравнительно легко отличить свойства соединений с преобладанием ковалентной или ионной связи. К соединениям ковалентного типа относятся углеводороды, разнообразные другие органические вещества, СиО,, P I3, P I5 и т. п. Значительная доля ковалентной связи содержится в молекулах галогенидов, оксидах и сульфидах переходных металлов. [c.124]

    Гидриды. Изучение гидридов позволяет глубже понять специфику свойств атомов водорода. Гидриды подразделяют на ионные (со-леобразпые), металлические и ковалентные (см. 11.2, 12.2). [c.247]

    В рцду Се-РЬ наблюдается усиление металлических свойств и уменьшение доли ковалентной связи соединениях. Поэтому уменынаекя устойчивость ковалентных гидридов ЭН4. [c.386]

    Аналогичное же соединение углерода — метан СН4 достаточно прочное и при комнатной температуре реагирует только со фтором и хлором. Гидрид бора состава ВНз крайне неустойчив. Устойчивы газообразный гидрид бора состава В2Н0, жидкий В5Н9, твердый ВюН (т. пл. 99,6°С) и некоторые другие. В твердых гидридах бора осуществляется смешанная ковалентно-металлическая связь. Гидриды бора перспективны как ракетное топливо, их интенсивно синтезируют и изучают. [c.238]


Смотреть страницы где упоминается термин Гидриды ковалентные: [c.479]    [c.296]    [c.297]    [c.368]    [c.79]    [c.573]    [c.455]    [c.68]    [c.76]    [c.235]    [c.239]   
Аналитическая химия (1973) -- [ c.10 , c.45 , c.199 , c.201 , c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Гидриды щелочных металлов энергия ковалентной связи

Ионные солеподобные и ковалентные гидриды

Ковалентность



© 2025 chem21.info Реклама на сайте