Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, анодное растворение образования адсорбционных связе

    Неоднозначность влияния адсорбционных процессов на коррозию связана с многостадийностью анодного растворения металла. Каталитический характер анодной реакции растворения железа обусловлен образованием промежуточного поверхностно-активного соединения (РеОН)ад(.. Введение в раствор поверх- ностно-активных добавок (например, ионов хлора или ингиби- торов), способных конкурировать с ионами ОН и вытеснять их с поверхности металла, приводит к подавлению каталитического механизма и замедлению коррозии. [c.143]


    Для реакций анодного растворения металлов характерна сильная зависимость скорости от состава раствора, в частности, от природы и концентрации анионов (Я. М. Колотыркин, 1955 г.). При добавлении поверхностно-активных анионов скорость увеличивается. Отсюда следует, что первой стадией реакции анодного растворения металла является стадия адсорбции аниона с образованием химической связи с атомом металла. Эта связь облегчает последующие стадии отрыва атома (иона) из кристаллической решетки и его сольватации. Стадия адсорбции может быть связана с одновременным поверхностным перемещением растворяемого атома в более выгодное положение (например, из положения 3 в положение 1, см. рис. 15.4), где облегчено образование адсорбционных и сольватационных связей. [c.330]

    При электрохимическом полировании переход металла в раствор происходит в условиях частичной пассивности, что связано с образованием на нем пассивирующей пленки оксидной или оксидно-адсорбционной природы. Она образуется под влиянием взаимодействия продуктов растворения металла с компонентами электролита или вследствие непосредственного окисления при повышении анодного потенциала, а также сорбционных процессов. Результат анодной обработки в этих условиях определяется соотношением скоростей формирования пленки и ее растворения в электролите. Преобладание первой из них способствует оксидированию, второй — травлению металла. Эффект полирования достигается при близких скоростях процессов, когда формируется пленка минимальной толщины, которая, однако, должна быть достаточной, чтобы предотвратить травящее действие электролита на металл. [c.73]

    Изложенные в предыдущих разделах вопросы механизма коррозионных процессов относились к случаям, когда скорости собственно анодных реакций растворения металлов не зависели от состава раствора. В действительности же нередко на скорости процессов растворения, явно лимитирующимися электрохимическими стадиями, влияет не только потенциал, но (при постоянном потенциале) и концентрации некоторых компонентов раствора, чаще всего анионов электролита. Эти эффекты нашли объяснения на основе развитого Я.М. Колотыркиным учения, согласно которому электрохимические реакции ионизации атомов металла, как правило, включают стадии химического или адсорбционно-химического взаимодействия поверхностных атомов металла с компонентами среды. Такое взаимодействие приводит к образованию устойчивых или промежуточных комплексов металла с компонентами раствора непосредственно в электрохимической стадии. При хемосорбции компонента, участвующего в реакции растворения металла, реализуется определенная прочность связи между адсорбированной частицей и электродом и определенная степень заполнения поверхности, возрастающие по мере смещения потенциала в положительном направлении и определяющие скорость растворения металла. [c.95]


    Анодное растворение сталей и чугунов в различных растворах кислот и солей связано с пассивацией их поверхности.. - В настоящее время пассивное состояние металлов объясняют пленочной и адсорбционной теориями, которые не противоречат, а лишь дополняют друг друга [200, 227, 282 - 286]. Пленочная теория пассивности исходит из возможности образования на поверхности железа при определенных значениях потенциала пленки, состоящей из труднорастворимого ( Се20з и легкорастворимого оксида Например, начало пассивации железа в раство- [c.72]

    Механизм пассивирующего действия адсорбированных слоев кислорода связывают с хемосорбцией заряженных частиц О", О , среди которых предпочтение отдают частицам О", так как они обладают гораздо более высокой знергией адсорбционной связи с поверхностью [ 27б]. В связи с представлениями А.И.Красильщикова, Харлена, Хойслера и Я.М.Колотыркина анодное растворение металлов в кислых средах можно представить череэ образование электрохимически активного поверхностного оксида по схеме 27б]  [c.73]

    Адсорбционная теория пассивирования ингибиторами строится на предположении, что металлы покрываются хемосорбированной пленкой пассивирующих ионов. Такой слой вытесняет адсорбированные молекулы воды и замедляет процесс анодного растворения, включающий стадию гидратации ионов. Адсорбционная теория получила поддержку на том основании, что большинство легко пассивирующихся металлов относится к переходным металлам периодической системы Менделеева, т. е. к таким, которые содержат незаполненные i-подуровни. Это может объяснить механизм образования сильной связи металла с ингибиторами, в частности содержащими кислород кроме ионной связи возникает и ковалентная связь. [c.67]

    Таким образом, следует заключить, что под действием переменного тока интенсифицируется процесс анодного растворения титана и тем в большей степени, чем выше частота наложенного переменного тока. Это связано с тем, что при наложении переменного тока в катодный полупериод происходит активация поверхности титана. В следующий затем анодный полупериод активная поверхность металла начинает растворяться, а к концу нолупериода может снова пассивироваться. Как было сказано выше, в течение анодного нолупериода на поверхности титана в основном протекает процесс ионизации металла и электрохимической посадки кислорода с образованием сначала адсорбционных свя- [c.90]

    Тсрможение процесса анодного растворения металла при пассивировании в определенной степени может быть вызвано специфической и электростатической адсорбцией ионов, изменяющих величину ifi -потенциала и образующих поверхностные комплексы, оказывающие определенное влияние на скорость анодного растворения. Однако решающую роль играет изменение строения двойного электрического слоя на поверхности металла и непосредственно на границе металл — раствор. При этом, если происходит образование прочной связи адсорбированного (хемосорбирован-ного вещества с металлом на всей поверхности, то скорость процесса сильно замедляется. По такому механизму происходит пассивирование платины в растворах НС1, причем при адсорбции кислорода в раствор вытесняется эквивалентное число адсорбированных ионов хлора, что и вызывает снижение плотности тока анодного растворения платины по экспоненциальному закону (адсорбционно-электрохимический механизм Б. В. Эршлера). Очевидно, что при пассивировании возможно и неполное покрытие поверхности металла кислородом с образованием поверхностных соединений. В этом случае замедление скорости анодного процесса связано с блокировкой части активной поверхности. [c.353]

    Для объяснения сложной формы анодных кривых, наблюдаемых при растворении металлических осадков с поверхности твердых электродов, рассматривают два состояния осадка на поверхности электрода - адсорбционное и кристаллизационное. В адсорбционном состоянии связь металла с поверхностью электрода прочнее, чем связь в соответствующей кристаллической решетке. При этом количество осажденного металла не превышает величин, необходимых для образования монослоя. Формирование кристаллической структуры начинается с появлением двумерных зародышей, которые возникают лишь при осаждении второго слоя. Ход процесса электронакопления определяется природой взаимодействия осаждаемый металл-электрод и условиями электролиза (потенциал, время накопления, концентрация иона в растворе и т.п.). При небольших т и С основной вклад в образование осадка вносят адсорбционные силы. Увеличение продолжительности электролиза и концентрации иона металла приводит к заполнению поверхности электрода и увеличению вклада кристаллизационной составляющей. При этом на анодной кривой растворения осадка металла могут наблюдаться два пика, соответствующие двум состояниям металла. На рис. 11.6 в качестве примера приведены анодные кривые [c.426]


    Коррозионные процессы на алюминии, анодно поляризованном нержавеющей сталью, более или менее понятны. Причины коррозии стали и тем более ускорения разложения перекиси водорода даже тогда, когда коррозии нет, пока недостаточно ясны. Литературные данные об электрохимическом поведении перекиси на электродах из нержавеющей стали, а также и самих электродов в концентрированных ее растворах очень скудны. Достаточно хорошо исследовано лишь анодное поведение нержавеющей стали 18-8 в кислых водных растворах [2—6], в некоторых случаях даже с добавками небольших количеств перекиси водорода в качестве окислителя [7]. Известно, что в области потенциалов от 0,15 до 1,0—1,1 в эта сталь находится в состоянии устойчивой пассивности. При ф 1,1 в наступает перепассивация, а при ф —0,15 е—активное растворение. Бунэ и Колотыркин [3] полагают, что пассивность стали обусловлена изменением состояния поверхности в результате ее адсорбционно-химического взаимодействия с кислородом воды или анионами элекролита. По мнению некоторых исследователей [8, 9], окислитель не взаимодействует с металлом, а изменяет редокс-потен-циал среды, смещает стационарный потенциал в ту или иную область поляризационной кривой, действуя аналогично анодной поляризации. Другие авторы [10—12] считают, что пассивность нержавеющих сталей связана с образованием на их поверхности фазовых [c.92]


Смотреть страницы где упоминается термин Металлы, анодное растворение образования адсорбционных связе: [c.91]    [c.207]    [c.178]   
Ингибиторы кислотной коррозии металлов (1986) -- [ c.101 , c.103 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Анодное растворение металлов

Металлы растворение

Образование металлов

Связи в металлах

Ток анодный



© 2025 chem21.info Реклама на сайте