Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал взаимодействия поверхностный

    Строение двойного электрического слоя в условиях специфической адсорбции. Адсорбция — концентрирование вещества из объема фаз на поверхности раздела между ними — может быть вызвана как электростатическими силами, так и силами межмолекулярного взаимодействия и химическими. Адсорбцию, вызванную силами неэлектростатического происхождения, принято называть специфической. Вещества, способные адсорбироваться на границе раздела фаз, называются поверхностно-активными (ПАВ). К ним относятся большинство анионов, некоторые катионы и многие молекулярные соединения. Специфическая адсорбция ПАВ, содержащегося в электролите, влияет на структуру двойного слоя и величину ф1 потенциала (рис. 172). Кривая 1 на рис. 172 соответствует распределению потенциала в двойном электрическом слое в отсутствие ПАВ в растворе. Если раствор содержит вещества, дающие при диссоциации поверхностно-активные катионы, то за счет специфической адсорбции поверхностью металла катионы будут входить в плотную часть двойного слоя, увеличивая ее положительный заряд (кривая 2). В условиях, способствующих усилению адсорбции (например, увеличение концентрации адсорбата), в плотной части может оказаться избыточное количество положительных зарядов по сравнению с отрицательным зарядом металла (кривая 3). По кривым распределения по- [c.474]


    Обратноосмотические мембраны отличаются от других типов мембран (ионно-обменных, непористых, ультрафильтрационных) невысокой плотностью поверхностного заряда, малыми размерами пор (г 20 30 А) и отрицательной адсорбцией растворенного вещества, связанной с дальнодействием поверхностных сил. Поэтому в первом приближении можно использовать для расчетов модель незаряженных пор. Ввиду малости размеров пор и неопределенности их геометрии целесообразным упрощением является введение средних скоростей течения жидкости в порах и//и (где т — пористость мембраны), средних коэффициентов диффузии растворенного вещества в поровом пространстве а, также осредненных по сечению пор значений концентрации С и потенциала взаимодействия молекул с поверхностью пор Ф = i//k7. Расчет осредненных значений и Ф применительно к различным моделям пористой структуры (цилиндрические и щелевые поры) сделан в работах [28—30]. [c.300]

    Для расчета работы образования паровой фазы в многокомпонентной системе при постоянстве давления и температуры необходимо значение термодинамического потенциала Гиббса для исходного и конечного состояний системы. При этом следует учитывать, что на работу по образованию зародыша паровой фазы из метастабиль-ной жидкой фазы оказывают влияние сорбционно-десорбционные процессы на границе раздела фаз, приводящие к изменению поверхностного натяжения, а также изменение химического потенциала взаимодействующих компонентов системы в процессе образования зародыша. [c.110]

    Адсорбционные индикаторы представляют собой специальный тип индикаторов для титрования методом осаждения. Это — органические вещества, ионы которых адсорбируются на осадке в зависимости от заряда на поверхности его решетки. Адсорбированный индикатор поляризуется в результате взаимодействия поверхностного заряда осадка и электронной системы индикатора. Возникающее при этом смещение электронных энергетических уровней в большей или меньшей степени изменяет спектр поглощения индикатора или может приводить к тушению флуоресценции. Установлено, что некоторые индикаторы образуют соединения с ионами осадка. Действие большинства адсорбционных индикаторов зависит только от поляризационных эффектов, возникающих после соосаждения (адсорбции). Известно, однако, небольшое число окислительно-восстановительных и комплексонометрических индикаторов, которые изменяют окраску в результате адсорбции одного из своих собственных ионов на осадке, так как локальная концентрация этого иона на поверхности осадка оказывается значительно большей, чем в растворе, и, таким образом, изменение окислительно-восстановительного потенциала или значения рМ, как это может иметь место в данном случае, будет достаточным для начала реакции индикатора. [c.341]


    Решение этой проблемы было предложено в 1927 г. А. Н, Фрумкиным. В гальванической цепи межфазные потенциалы возникают на всех границах раздела. Каждый гальвани-потенциал согласно уравнению (12,3), может быть представлен как алгебраическая сумма трех составляющих пограничного потенциала и двух поверхностных потенциалов. Обозначим поверхностный потенциал фазы (а) на границе с вакуумом v(= o На границе с другой конденсированной фазой (у) поверхностный потенциал несколько изменяется вследствие взаимодействия поверхностных слоев. Обозначим это изменение,  [c.260]

    Сделаем предположение, что характер взаимодействия поверхностного слоя раствора электролита с каждым из металлов (1) и (2) примерно одинаков кроме того, будем считать, что в рассматриваемой системе отсутствует специфическая адсорбция ионов. В этом случае значения последних двух квадратных скобок в уравнении (12.61) превращаются в ноль. Тогда из (12.61) и (12.62) следует важное соотнощение, связывающее вольта-потенциал со значением н. р. ц. гальванической цепи  [c.261]

    Явления пассивации и перепассивации металлов иллюстрируются рис. 76 на примере растворения хрома. На участке кривой аЬ скорость растворения хрома растет с увеличением анодного потенциала. На участке Ьс происходит изменение состояния поверхности электрода и скорость растворения падает. На этом участке поверхность металла покрывается оксидом, возможно СгаОз. На участке сс1 электрод находится в пассивном состоянии и скорость растворения на нем определяется химическим взаимодействием поверхностного оксида с раствором. На участке ёе начинается перепассивация хрома и увеличивается скорость растворения оксида с ростом потенциала, например, по реакции [c.161]

    Изложенные в предыдущих разделах вопросы механизма коррозионных процессов относились к случаям, когда скорости собственно анодных реакций растворения металлов не зависели от состава раствора. В действительности же нередко на скорости процессов растворения, явно лимитирующимися электрохимическими стадиями, влияет не только потенциал, но (при постоянном потенциале) и концентрации некоторых компонентов раствора, чаще всего анионов электролита. Эти эффекты нашли объяснения на основе развитого Я.М. Колотыркиным учения, согласно которому электрохимические реакции ионизации атомов металла, как правило, включают стадии химического или адсорбционно-химического взаимодействия поверхностных атомов металла с компонентами среды. Такое взаимодействие приводит к образованию устойчивых или промежуточных комплексов металла с компонентами раствора непосредственно в электрохимической стадии. При хемосорбции компонента, участвующего в реакции растворения металла, реализуется определенная прочность связи между адсорбированной частицей и электродом и определенная степень заполнения поверхности, возрастающие по мере смещения потенциала в положительном направлении и определяющие скорость растворения металла. [c.95]

    В пользу возможности протонной проводимости на границе раздела водной фазы с полярной частью фосфолипидного бислоя свидетельствуют данные о латеральной протонной проводимости на границе липидного бислоя с водой. Вдоль монослоя из фосфатидилэтаноламина создавался градиент pH и измерялась продольная скорость переноса протона путем регистрации флюоресценции меченого в полярной головке фосфолипида. Одновременно производили измерения поверхностного потенциала и поверхностного давления. Показано, что протон движется вдоль монослоя липида в том случае, если этот монослой организован и упорядочен. Скорость переноса значительно превышала скорость диффузии протонов в воде. Эффект был обнаружен в монослоях из большинства природных фосфолипидов. Полная дегидратация фосфолипидов в полярной области приводила к потере протонной проводимости. Авторы предполагают, что молекулы воды на границе раздела липид-раствор образуют четыре слоя объемный слой раствора, слой гидратной воды, молекулы воды в котором непосредственно взаимодействуют с полярными группами молекулы липида слой молекул воды, связанный водородной связью с молекулами липида на уровне карбонильной группы, и, наконец, трансмембранные водные мостики. В целом на поверхности липидного бислоя образуется сеть водородных связей, обеспечивающих быстрый перенос протонов. Предполагается при этом, что протоны, передвигающиеся в системе водородных связей на поверхности бислоя, не смешиваются с протонами объемного слоя воды. Таким образом, возможен мембранный обмен протонами между протонными каналами и протонными насосами, минуя раствор электролита, омывающего мембрану. Кроме того, молекулы липида в кромке липидной поры способны, как показано в последнее время, участвовать в 64 [c.64]

    Электростатическая теория устойчивости дисперсных систем приложима к тем системам, устойчивость которых обеспечивается только электростатическим фактором. В реальных же дисперсных системах наблюдается в лучшем случае преобладание того или иного фактора устойчивости. Однако электростатический фактор устойчивости характерен для наиболее распространенных систем с водными средами, создающими условия для диссоциации. Механизм образования электростатического барьера связан с механизмом образования двойного электрического слоя поверхностная диссоциация вещества частиц, адсорбция электролитов, в том числе ионогенных ПАВ и ВМС, и ориентирование диполей молекул растворителя илн растворенных веществ. Так как электростатический барьер определяется, главным образом, электрическим потенциалом и толщиной двойного электрического слоя (VI. 103), то, очевидно, он будет возрастать с увеличением поверхностной диссоциации, количества адсорбируемых потенциалопределяющих ионов и прочности их закрепления, а также с уменьшением взаимодействия противоионов с поверхностью (увеличение толщины двойного слоя). При наличии на поверхности функциональных групп, обладающих слабыми кислотно-основными свойствами, значение потенциала и соответственно потенциального барьера зависит от pH среды. Электролит-стабилизатор должен иметь одии иои с достаточным сродством к веществу частицы (заряжение поверхности), другой—к растворителю (для обеспечения диссоциации электролита-стабилизатора и достаточной толщины двойного слоя). [c.332]


    Пористые мембраны представляют гетерогенные системы с весьма развитой поверхностью раздела твердое тело (матрица)— газ. Известно, что состояние газа или жидкости вблизи поверхности раздела фаз отличается от свойств той же среды в большом объеме. Особенности поведения веществ в этой области принято называть поверхностными явлениями. Термодинамически поверхностные явления трактуются как проявление особого вида взаимодействия системы, которое характеризуется уменьшением свободной энергии Гиббса при переходе вещества из объемной в поверхностную фазу. Убыль свободной энергии Гиббса пропорциональна площади поверхности и количественно определяется работой, которую необходимо затратить на образование поверхности или перемещения массы из объема в поверхностный слой в изотермическом процессе. Следовательно, речь идет о существовании потенциала поверхностных сил. [c.42]

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]

    Молекулярно-статистические методы позволяют связать адсорбционный потенциал и, следовательно, константу адсорбционного равновесия К (Г) с параметрами взаимодействия молекул газа с поверхностными элементами матрицы мембраны [2]. В тех случаях, когда взаимодействие вызвано только дисперсионными силами, адсорбционный потенциал определяется минимумом потенциальной кривой, описывающей потен- [c.50]

    Вследствие встречающихся математических трудностей, точное решение проблемы взаимодействия двух двойных сферических электрических слоев невозможно из-за большого числа переменных (поверхностный потенциал, толщина двойного слоя, радиус частицы, расстояние между частицами). [c.39]

    При соприкосновении с водой поверхностные атомы твердого тела подвергаются воздействию силового поля молекул воды, которые благодаря своему малому размеру как бы внедряются в кристаллическую решетку твердого тела. Это взаимодействие, которое принято называть гидратацией, может быть настолько сильным, что ослабленные связи атома металла со своими внешними (валентными) электронами нарушаются и атом металла получает возможность покинуть узел кристаллической решетки и перейти в воду. Так образуется ион-атом, несущий положительный заряд. Перешедший в раствор ион-атом гидратируется, т. е. окружается ориентирующимися вокруг него молекулами воды. При этом оставшиеся в металле электроны являются носителями отрицательного заряда. Таким образом,у поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающим к поверхности металла. При достижении определенной величины скачка потенциала дальнейший переход ион-атомов металла в раствор прекращается. Очевидно, что способность металла отдавать в раствор свои ион-ато-мы под воздействием силового поля молекул воды определяет различную величину скачка потенциалов в двойном электрическом слое. [c.29]

    Гиббс предполагал, что переходный слой между двумя фазами, в котором происходит постепенное изменение свойств, имеет очень малую толщину. Поскольку в то время не было никаких данных о размерах молекул и силах, действующих между ними, Гиббс не смог оценить, какова эта толщина, и, таким образом, определить размер фаз, к которому все еще можно применять представления о поверхностной фазе с независящими от размеров параметрами. Однако он, по-видимому, допускал, что такая граница существует. Говоря, например, об устойчивости пен [4], он совершенно определенно утверждал, что очень тонкие слои могут иметь особые свойства, которые способны приводить к их неустойчивости и разрушению. Более четко идея об изменении термодинамических свойств (химического потенциала) в тонком слое была изложена Поляни в 1914 г. Согласно Поляни, в результате взаимодействия молекул тонкого полимолекулярного слоя с подложкой, поверх которой [c.92]

    Химические реакции в поверхностных пленках. Надо полагать, что сам факт нахождения молекул в монослое на поверхности жидкости не изменяет ее химическою активность. Тем не менее экспериментальные данные показывают, что возможность химического взаимодействия молекул пленки с молекулами или ионами подкладки в значительной мере зависит от ориентации и плотности упаковки молекул пленки. Вследствие этого скорость реакции вещества пленки существенно зависит от ее структуры. Течение химических реакций в поверхностных пленках можно проследить, измеряя поверхностное давление или скачок потенциала. Первый из этих способов позволяет обнаружить всякое изменение, сопровождаемое заметной переориентацией молекул, второй—всякую реориентацию диполей или изменение полного дипольного момента молекулы. [c.58]

    Ионы связываются в поверхностном слое мицеллы за счет электростатического взаимодействия с заряженными группами ПАВ. Коэффициент распределения зависит от электростатического потенциала мицеллы и равен примерно 10—100 для ионов с единичным зарядом, противоположным по знаку заряду мицеллы [98]. Естественно, ионы, одноименно заряженные с мицеллой, ею отталкиваются. [c.116]

    Если задан потенциал взаимодействия поверхностных слоев Ру)(т), то соотношение (XIII. 27) может быть использовано для расчета расклинивающего давления. Очевидно, расклинивающее давление будет положительным при наличии отталкивания и отрицательным — при наличии притяжения между поверхностными слоями пленки. [c.270]

    Для того, чтобы изобразить эту зависимость графически, предположим, что потенциал взаимодействия поверхностных слоев задан для какого-то определенного выбора положения разделяющих поверхностей как функция расстояния между ними. Тогда для любого расстояния т (рис. 24) можем по формуле (XIII. 27) рассчитать разности давлений РМ—Р< ) и —рО), после чего по уравнениям (XIII. 30) и (XIII. 31) определим наклон прямых, по которым находятся поверхностные натяжения для любого другого положения разделяющих поверхностей. [c.272]

    Физическая химия - естественно-научная дисциплина, комплексно изучающая взаимообусловленные превращения вещества и энергии. Наука о коррозии и противокоррозионной защите ( коррозиология) занимает важное место среди разделов физико-химии, использующих электрохимический подход. В процессе коррозии поверхность металла является катализатором окислительно-восстановительных превращений компонентов жидкой и газовой фаз, как это имеет место в гетерогенном катализе, но сама служит участником реакций. Поэтому большую роль играют степень гетерогенности металлической поверхности, ее фазовый состав, ноликристалличность и взаимное влияние структурных составляющих материала. Ситуация осложняется изменением во времени электродного потенциала и поверхностных слоев корродирующего металла и среды. Поэтому научной основой коррозиологии является электрохимия растворяющихся металлических поверхностей как самостоятельный раздел теоретической электрохимии. Основными понятиями являются физико-химическая система, включающая металл и среду, а также физико-химический процесс. Исходя из этого, коррозия трактуется как переход компонентов металлического материала из его собственной системы связей в состояние СВЯЗИ с компонентами среды. Химическое и (или) электрохимическое взаимодействие металла и среды изменяет его свойства и нарушает его функции. Коррозия характеризуется скоростью воображаемого непрерывного движения точки фронта коррозии, то есть границы раздела между металлом и средой, в том числе продуктами коррозии. Техническая скорость коррозии как характеристика коррозионной стойкости -это наибольший показатель коррозии, вероятностью превышения которого нельзя пренебречь. Существуют следующие показатели коррозии массовый ( г/м с), линейный (мм/год), объемный ( м/с), токовый (А/м ), а также время до появления первого очага коррозии, ДОЛЯ поверхности, занятая продуктами коррозии, количество точек или язв на единице поверхности и др. [c.8]

    Уточнения проведенной простейшей оценки поверхностной энергии могут осуществляться различными путями в зависимости от пророды конденсированной фазы и характера межмолекулярных взаимодействий в вей. Так, межмолекулярное расстояние Ъ можно определить, сопоставляя силы межмолекулярного притяжения и так называемого борновского отталкивания молекул на малых расстояниях, возникающего вследствие перекрытия электронных оболочек сближающихся молекул. Равновесное расстояние (рис. 1-8) отвечает минимуму потенциала взаимодействия молекул, который може1г быть описан соотношением вида [c.28]

    Весьма полезная работа по обобщению и анализу практических и теоретических результатов по подготовке поверхности путем анодной обработки в 30% растворе серной кислоты проделана А.В.Митряковым [445]. В процессе анодного растворения ста-лей в растворах кислот на их поверхности образуется пассивирующа) пленка, которая приводит к уменьшению адгезии нерастворимых продуктов с обрабатываемой основой и их удалению при достижении потенциала газовыделения кислорода [451]. Анодная подготовка, как отмечается во всех цитируемых работах, призвана также решить задачу защиты активной поверхности тонкой сплошной пассивной пленкой вплоть до начала злектрокристаллизации. По существующим представлениям пассивацию металлов вызывает образование поверхностных оксидных слоев илц труднораотворимых солей, являющихся продуктами взаимодействия поверхностных атомов металла с молекулами воды и анионами раствора. [c.150]

    Характер взаимодействия поверхностно-активных веществ (ПАВ) зависит от природы и концентрации ПАВ и растворителя, а также от потенциала поляризации. Особенно сильное воздействие оказывают вещества с я-элект ронной структурой. Свободная энергия адсорбции вещества на ртути AGнg зависит от энергии сольватации иона в объеме раствора и в поверхностном слое (их разность на незаряженной поверхности характеризует эффект выжимания частиц в плотную часть двойного слоя), от энергии связи молекул адсорбированного вещества, входящего в двойной слой, со ртутью АСнд-орг и от энергии связи со ртутью молекул растворителя АОна-НгО, вытесняющихся из двойного слоя - [c.20]

    Характер изотерм указывает также на наличие макро- и переходных пор в углях БАУ, АПК, АР-3, АГ-3, АГ-5, где происходит полимолекулярная aд Qpiбция опять-таки молекул метилциклопентана, так как предполагается, что изменение химического потенциала в объемном растворе меньше, чем изменение химического потенциала в поверхностно-адсорбционном растворе. Иначе говоря, взаимодействие адсорбат — адсорбент в области концентраций до 17,4%-ного содержания [c.48]

    Привлекательность формулы Фаулера для о состоит в том, что она позволяет избежать весьма сложных вычислений Ра(2) и бинарных корреляционных функций в переходной области, где не являются сферически симметричными. Хроме того, из этой формулы можно вывести интересное соотношение для поверхностного натяжения солей определенного типа, а именно для солей, принадлежащих к симметричному валентному типу, ионы которых тождественны в смысле короткодействия V r), парный потенциал взаимодействия можно записать в виде [c.170]

    Снижение перенапряжения процесса растворения — выделения металла часто происходит в результате образования поверхностных комплексов с анионами раствора электролита. Так, в присутствии адсорбирующихся галоидных анионов возрастает величина тока обмена, например, между амальгамой цинка и раствором его соли [296]. Как мы видели, ионы хлора в щелочных растворах депас-сивируют железо. Галоиды оказывают активирующее действие, адсорбируясь в виде ионов, причем образующийся комплекс, очевидно, гидратирован. Вероятно, во многих случаях такого рода активация может быть объяснена на основании теории двойного слоя при учете г з 1-потенциала. Гидратированный поверхностный комплекс металла с галоидом легко теряет связь с основной массой металла и переходит в раствор. Этим объясняется, например, тот факт, что скорость анодного растворения платины при постоянном потенциале оказывается пропорциональной концентрации ионов хлора в электролите [265]. Пассивирующее действие аниона связано, вероятно, с более глубоким взаимодействием между анионом и металлом, приводящим к образованию поверхностных соединений, теряющих гидратирующую воду и получающих свойства пленки. В настоящее время нет еще простой теории, которая бы объясняла полностью наблюдающиеся в этом случае кинетические эффекты. [c.147]

    Так, например, кусочек руды размером 1 см имеет поверхность б см (при форме куба) если его раздробить на кубики величиной 1 мм , то их общая поверхность станет равной 60 см - если тот же материал измельчить до такой степени, чтобы он проходил через сито, имеющее 6400 отв1см , то поверхность частиц превысит 800 см . Рост удельной поверхности материала приводит и к качественному его изменению возрастает его реакционная способность вследствие увеличения изобарного потенциала поверхности и появления при измельчении многочисленных поверхностных дефектов — трещин, облегчающих проникновение реагентов вглубь зерен. Следовательно, измельчение шихты является мощным фактором интенсификации обжига. Однако чрезмерное измельчение, как и чрезмерное повышение температуры, в некоторых случаях может привести к сильному спеканию шихты. Крупные частицы меньше подвержены спеканию, так как они имеют меньшую удельную поверхность и больший вес, противодействующий силе сцепления между взаимодействующими поверхностными элементами. Помимо этого, при сильно измельченной шихте увеличиваются потери материалов в виде пыли, выносимой из печи уходящими газами. В печах некоторых конструкций, например в шахтных, тонкоизмельченные материалы вообще не могут обжигаться, так как сплошной слой таких материалов создает большое гидравлическое сопротивление, препятствующее двил<ению газа. [c.36]

    Большое значение для процесса роста криоосадка имеет явление поверхностной миграции частиц, падаю-Ш.ИХ на поверхность кристалла- Сущность этого явления может быть пояснена на двухмерной модели. Молекулы, находящиеся в углах кристаллической решетки, совершают колебательные движения не только в направлении, перпендикулярном поверхности криоосадка, но также имеют составляющую, расположенную в плоскости криоосадка. Периодическая структура решетки кристалла приводит к периодическому изменению потенциала взаимодействия частиц атомного ряда (периодичность потенциальных ям) в направлении, параллельном поверхности криоосадка, как это изображено на рис. 1-11. Энергетическое состояние молекулы, находящейся в потенциальной яме, вызывает поверхностные колебания молекулы в некоторых пределах Хи Хг. Если молекула приобретает энергию Ещ2 большую, чем Ещ, то она может переместиться в положение Хз. [c.24]

    Расчет коэффициента конденсации часто оказывается затруднительным из-за отсутствия данных о структуре поверхностного слоя конденсата и характере взаимодействия пар - конденсат. Поверхностный слой жкдкости имеет особую структуру и отличается по своим свойствам от объемной фазы. У воды,которая обладает особенно сложной структурой, обусловленной водородными связями, диполь-дипольными и дисперсионными силами, следует ожидать появления различных особенностей в поверхностных слоях. Так, вследствие сильной полярности воды на ее поверхности наблвдается ориентация молекул-диполей, которая может привести к появлению скачка потенциала в поверхностном слое, изменить характер вращения молекул и т.д. [c.161]

    Уравнение (71) определяет так наываемый реальный потенциал а частицы I в фазе а, который можно измерить и который равен по величине, но обратен по знаку работе выхода частицы I из фазы а—Шг . Согласно уравнению (70) электрохимический потенциал ц, можно определить как суммарную работу переноса заряженной частицы / из бесконечности в точку внутри фазы а. Химический потенциал представляет собой энергию взаимодействия г-й частицы внутри фазы а с частицами, образующими эту фазу. Электрохимический ц, химический р, и реальный а потенциалы имеют размерность энергии (Дж, эВ) потенциалы — внутренний ф, поверхностный у и внешний 1[), размерность электрического потенциала (В). [c.24]

    Образующиеся в ходе такого взаимодействия гидроксиды и оксиды будут, естественно, изменять свойства металла, в том числе его нулевую точку и работу выхода. Весьма вероятно, что отклонения, наблюдающиеся для галлия и некоторых других металлов, обусловлены именно этой причиной. В пользу такого заключения говорит и уменьшение расхождения при смещении потенциала электрода отрицательнее нулевой точки, т. е. когда становится более вероятным восстановление поверхностных оксидов и переход к чистому металлу. Следует, однако, иметь в ниду, что теория электрокапи.мярных явлений, элементы которой были рассмотрены, относится лишь к случ<1Ю идеально поляризуемых электродов. При переходе к обратимым электродам появляются осложнения, связанные с определением заряда их поверхностей. Во-первых, на обратимых электродах возможно протекание электрохимических реакций и связанный с ними перенос зарядов через границу раздела электрод — раствор. Во-вторых, в этом случае иельз) игнорировать (чего, впрочем, нельзя делать и для любых не идоал1>но поляризуемых электродов) передачу электронов от ионов или от других адсорбированных частиц на электрод и в обратном направлении. Многие [c.259]

    Использование теории Гуи — Чэпмена в ее первоначальной форме пренебрегает такими моментами, как дискретность заряда иона, конечный радиус иона, местная диэлектрическая поляризация среды и т. д. Ясность по этому вопросу внесена Хейдоном (1964) и Снарнейем (1962). Наиболее важное уточнение учитывает специфическую адсорбцию противоинов по теории Штерна последующее уточнение проведено Вервеем и Овербеком (1948). Однако с точки зрения стабильности коллоидов адсорбция Штерна способствует уменьшению эффективного поверхностного потенциала, применяемого для вычисления энергии взаимодействия, которое в любом случае ограничено довольно малыми значениями. [c.98]

    В случае эмульсий (в отличие от золей) следует рассматривать два фактора, прежде чем решить, применима ли указанная выше формула, а именно возмояшость искажения капель при их взаимодействии и наличия диффузных слоев внутри самих капель. Если капли стабилизируются вследствие отталкивания двойных слоев, то сильное сближение способствует расплющиванию поверхностей потенциальный энергетический барьер, противодействующий соприкосновению капель, будет больше, чем вычисленный при предположении недеформированных сфер, при этом эффективный радиус кривизны увеличивается. Математического истолкования этого эффекта еще не существует. Влияние внутреннего диффузного слоя в масляной и водной фазах было рассмотрено Вервеем и Овербеком. Так как некоторая часть поверхностного заряда нейтрализуется внутренними противоионами, то поверхностный потенциал уменьшается но па отталкивание между каплями, благодаря взаимодействию их внешних двойных слоев, не влияет наличие внутренних двойных слоев. [c.98]

    Широкоизвестное поверхностно-активное вещество додецилсульфат натрия Hз( H2)пSOaNa (ДСН) образует сферы, содержащие от 50 до 100 молекул. Потенциал между мицеллой и раствором составляет 50—100 мВ, и важнейшими факторами, обеспечивающими стабильность мицелл, оказываются силы электростатических и гидрофобных взаимодействий.. ДСН часто используют для денатурации белков, у которых аналогичные электростатические и гидрофобные взаимодействия участвуют в формировании третичной структуры. [c.285]

    Следует иметь в виду, что представления о структуре материала основаны на закономерностях взаимодействия компонентов данного материала. В коллоидной химии изучаются составы, имеющие два основных компонента, точнее, две фазы дисперсную фазу (чаще всего в виде мелких твердых частиц) и дисперсионную среду (обычно жидкость, содержащую различные растворенные вещества). Состав системы определяет величину сил, действующих между частицами (так как от него зависят потенциал и толщина двойного слоя, а также толщина и состояние адсорбционного слоя поверхностно-активного вещества или полимера). Межчастичные силы и концентрация частиц, а часто и предыстория определяют, в свою очередь, структуру дисперсной системы и, следовательно, ее реологические свойства, поэтому, приступая к изучению реологических свойств, необходимо хотя бы в общих чертах познако- [c.151]

    До си пор мы рассматривали взаимодействие -одинаковых поверхностей. Значительно более сложная картина наблюдается, когда жидкая прослойка разделяет поверхностн двух различных тел. При этом даже если электрический потенциал поверхностей одинаков по знаку, отталкивание на достаточно близких расстояниях переходит в притяжение тем раньше, чем больше различаются лотенциалы. Когда толщина прослойки станет много меньше толщины двойного электрического слоя 1/х, сила притяжения (—Па) составит  [c.275]


Смотреть страницы где упоминается термин Потенциал взаимодействия поверхностный: [c.156]    [c.16]    [c.257]    [c.23]    [c.182]    [c.35]    [c.33]    [c.298]    [c.66]    [c.144]    [c.99]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.669 , c.671 , c.675 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал поверхностный



© 2024 chem21.info Реклама на сайте