Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Естественная конвекция потоке

    При анализе процессов теплообмена в теплообменниках химической промышленности речь может идти главным образом о ламинарном вынужденном режиме течения. Этот режим не является чисто ламинарным течением, а может быть назван неспокойным ламинарным течением. Нарушение чистого ламинарного течения вызывается возникновением вторичной циркуляции жидкости, причиной которой является естественная конвекция, возникающая из-за разности температур жидкости в различных точках сечения потока. [c.57]


    Еще один случай сегрегированного потока — ламинарное движение жидкости, когда молекулярной диффузией и естественной конвекцией ожно пренебречь. Тогда можно разделить поток на ряд элементарных кольцевых слоев, движущихся без взаимного перемешивания. [c.329]

    При дальнейшем рассмотрении пренебрегали влиянием естественной конвекции, так как в условиях эксперимента оно было невелико. Предположив наличие застойных зон и нестационарный обмен трассером между ними и подвижным потоком, получили выражение для Ре в следующем виде  [c.193]

    Аналогичная задача решена для пластинчато-трубчатых поверхностей при естественной конвекции в них газов [31, с. 40—43]. Разработаны структуры гидравлических расчетов при принудительном движении газов через эти аппараты [31, с. 141—149], а также погружных аппаратов с прямоугольными пучками оребренных труб (24 различные формы оребрения) [51, с. 30—33 40]. Решена задача расчета распределения потока теплоносителя в сечении аппарата. Предусмотрен способ корректировки результатов расчета. [c.249]

    Эксплуатационные показатели работы систем воздушного охлаждения с использованием ABO во многом определяются температурой атмосферного воздуха и значительно улучшаются при ее снижении относительно расчетного значения. Следует подчеркнуть, что при отрицательных температурах до 30% теплового потока может рассеиваться в результате естественной конвекции. [Основной статьей расходов при эксплуатации ABO является стоимость потребляемой электроэнергии. Однако, используя эффективные методы регулирования ABO изменением угла поворота лопастей, частоты вращения вентилятора и положения жалюзи, можно существенно снизить энергетические затраты  [c.4]

    В зависимости от температуры ii системы регулирования функционируют таким образом, чтобы обеспечивалась возможность эксплуатации АВО в режиме естественной конвекции. В теплый период года тепловой поток в режиме естественной конвекции может достигать 30% номинального для принудительной подачи охлаждающего воздуха. В холодный период года при [c.110]

    Требования ведения технологического процесса в большинстве случаев сводятся к поддержанию значения /вых или ограничению нижнего предела охлаждения по условиям изменения свойств теплоносителя. В системах воздушного охлаждения с четырьмя и больше АВО обычно применяют дискретное регулирование /вых отключением вентиляторов АВО. Такая система регулирования оправдала себя для широкого интервала изменения температуры охлаждающего воздуха. Она позволяет эксплуатировать систему охлаждения в режиме естественной конвекции. При работе в режиме регулирования с отключенными вентиляторами через АВО проходит технологический поток, охлаждение которого обеспечивается только естественной конвекцией, что препятствует переохлаждению теплоносителя и его замерзанию. В зависимости от конструкции АВО для регулирования используют жалюзи, рециркуляцию горячего воздуха или изменение угла поворота лопастей вентиляторов. [c.149]


    Трубная обвязка. Проходя через теплообменный аппарат, потоки газа или жидкости при нагревании перемещаются снизу вверх, а при охлаждении — сверху вниз. При таком перемещении происходит естественная конвекция в аппарате. [c.145]

    В теории теплообмена рекомендуется для достижения хорошего эффективного теплообмена соблюдать принцип направленной конвекции, когда направление естественной конвекции совпадает с движением газожидкостных потоков. В этом случае [c.145]

    В критерий Галилея пе входит скорость потока, а критерий Архимеда отражает разность плотностей жидкости в двух различных точках потока, т. е. при естественной конвекции. Обычно одновременное равенство различных критериев подобия в изучаемых потоках невозможно, и поэтому прн моделировании учитывают лишь те критерии, которые отражают влияние основных сил, действующих в потоке. Так, при перекачивании жидкости насосом по трубопроводу влияние силы тяжести можно не учитывать и исключить поэтому из рассмотрения критерий Фруда. Обычно общий вид зависимости при вынужденном движении жидкости по трубопроводу имеет вид [c.49]

    Возрастание сопротивления при течении в нагреваемых трубах обусловлено возникновением вторичного течеиия, при котором прилегающие к стенкам трубы нагретые слои жидкости поднимаются вверх, а вблизи вертикальной плоскости симметрии формируется нисходящий поток. Поэтому линии тока имеют форму спиралей в каждой из двух примыкающих друг к другу ячеек. Такое вторичное течение весьма напоминает течение в искривленных трубах (см. п. D). В действительности между эффектами кривизны и естественной конвекции существует более общая аналогия (см. 1127 в 2.2.1). [c.125]

    А. Коэффициенты теплоотдачи. Понятие коэффициента теплоотдачи а как коэффициента пропорциональности между тепловыми потоком q и температурным напором ЛТ лежит в основе большинства методов расчета теплообменников. Коэффициент теплоотдачи — всего лишь удобный параметр нри составлении уравнений для расчета. В ряде процессов теплопереноса (таких, как пузырьковое кипение и естественная конвекция) а. зависит от разности температур и поэтому на первый взгляд применяться в этих случаях не может. Тем не менее удобство его использования и отсутствие приемлемых альтернатив, [ю крайней мере, для расчетов без применения ЭВМ приводит к тому, что понятие коэффициента теплоотдачи часто применяется и к этим случаям. [c.4]

    Преимущество нагнетания воздуха состоит в том, что вентилятор и привод находятся в холодном воздухе, что повышает эффективность вентилятора (а это может снизить его стоимость), упрощает крепление вентилятора и привода и облегчает обслуживание. Однако воздушный поток через трубный пучок очень неоднородный, и низкая скорость нагретого воздуха при естественной конвекции может стать причиной рециркуляции горячего воздуха и снижения разности температур. Откачивание воздуха обеспечивает высокие скорости и настолько уменьшает влияние естественной конвекции, что рециркуляция становится маловероятной. Для защиты пакета труб от механических повреждений и дождя или града применяются жалюзи. [c.8]

    Это уравнение записано в предположении одномерного потока (т, е, считается, что все параметры изменяются только в направлении потока). Левая часть уравнения представляет собой движущий напор прн естественной конвекции, правая часть — сопротивление потоку воздуха через градирню, она равна динамическому напору, умноженному па коэффициент сопротивления. [c.129]

    При вынужденном движении потока жидкости, когда естественной конвекцией жидкости можно пренебречь, из критериального уравнения исключают критерий Грасгофа  [c.137]

    При вынужденном движении потока фазы естественной конвекцией можно пренебречь, тогда из уравнения выпадает критерий Ог  [c.270]

    В критерии Оа исключена скорость жидкости, поэтому им удобно пользоваться в тех случаях, когда трудно определить скорость потока. Критерий Аг характеризует подобие при движении жидкости вследствие разных плотностей в различных точках потока, т. е. в условиях естественной конвекции (стр. 364). [c.149]

    Массовая плотность потока при естественной Конвекции пропорциональна градиенту температуры и радиусу канала. [c.147]

    С помощью уравнения (1У-235) можно определить коэффициенты теплоотдачи а пр известным сопротивлениям Яо. Однако точность такого расчета не всегда удовлетворительна. В таких случаях мы говорим, что аналогия не выполняется. Так, уравне ние (1У-235) справедливо для плоской стенки, для потока, нормального к цилиндру, для движения щара в жидкости, для пленочного стекания жидкости в колонне. Оно ошибочно или требует поправок в случае естественной конвекции и при движении потока сквозь сыпучий слой. [c.341]

    Комплексная величина Я= (РоХ д рАТ является силой, действу- Ющей на теплоноситель и возникающей под влиянием разности температур, от которой зависит эффект переноса тепла. Разность температур определяет скорость перемещения теплоносителя вдоль поверхности нагрева, и поэтому сила Р однозначно характеризует мощность потока в условиях естественной конвекции. [c.87]


    Различие между вынужденной и естественной конвекцией заключается, во-первых, в способе формализации движущей силы теплообмена конвекций и, во-вторых, в различном влиянии параметров А1 и Аг, характеризующих влияние физических свойств, теплоносителя. Таким образом, при вынужденной конвекции движущей силой является мощность потока, тогда как при естественной конвекции эта мощность выражена через величину силы, действующей на поток. Что касается влияния физических свойств, то значение имеют не отдельные свойства, а их комбинация, характеризуемая параметрами Ai и Аг. Иными словами, с точки зрения эффекта теплообмена конвекцией эти свойства взаимозаменяемы. [c.87]

    Жидкие среды с низкой теплопроводностью имеют последнюю на 1—2 порядка, ниже, чем металлы, но их плотность на 3—4 порядка выше, чем плотность газообразных теплоносителей. Для солей и шлаков параметр Л1 столь низок, что высокое значение коэффициента теплоотдачи конвекцией можно обеспечить только за счет увеличения удельной мощности потока теплоносителя, т. е. его скорости при вынужденной конвекции или температурного напора при естественной. При естественной конвекции, кроме достаточного температурного напора, необходимо иметь высокое значение характерного геометрического параметра Хо, поскольку при низких значениях Хо уменьшается пг и высокая плотность теплоносителя и температурный напор оказывают меньшее влияние на теплообмен конвекцией. Практически это означает, что поверхность нагрева необходимо располагать вертикально. [c.88]

    При теплоотдаче в условиях естественной конвекции в числе определяющих критериев должен войти критерий Фруда, отражающий действие сил тяжести Б подобных потоках (Рг = w lgl). Однако ввиду трудности определения скорости при естественной конвекции критерий Фруда целесообразно заменить для данных условий на производный критерий Архимеда (см. стр. 83). я/з Ро —р яР Др Ро Ро  [c.282]

    Ламинарный режим. Ламинарное движение обычно осложняется естественной конвекцией, возникающей вследствие разности температур по сечению потока. Теплоотдача усиливается при наличии свободного движения жидкости, вызывающего некоторое ускорение потока, особенно заметное у вертикальных труб при противоположных направлениях вынужденного и свободного движения. В этом случае применимо уравнение [c.284]

    При работе гальванических ванн приходится часто сталкиваться с явлениями естественной конвекции. Естественная конвекция вызывается изменением плотности раствора при протекании электродного процесса. Изменение плотности связано с расходом реагирующего вещества, а также с неравномерным распределением температуры. Естественная конвекция возникает в условиях, если градиент плотности раствора направлен перпендикулярно к полю тяжести или так, что плотность возрастает вверх. Наиболее просто описывается естественная конвекция к гладкой пластинке, расположенной вертикально в поле тяжести. Значительно сложнее теоретически обработать естественную конвекцию при горизонтальном расположении электрода, когда вблизи поверхности могут возникать турбулентные вихревые потоки. Эффективная толщина диффузионного слоя при естественной конвекции к вертикальной пластинке выражается уравнением [c.167]

    Изменение плотности жидкости при изменении температуры гораздо слабее, чем при изменении концентрации. Поэтому при малых перепадах температуры вызванный ими диффузионный поток оказывается меньше, чем вызванный изменением концентрации. Приведенная формула естественной конвекции получена в предположении о ламинарном течении жидкости в диффузионном слое, которое часто нарушается на опыте. [c.178]

    Третий механизм массопереноса — конвекция, т. е. перенос вещества вместе с потоком движущейся жидкости. В естественных условиях конвекция возникает в результате градиента плотности раствора, который, в свою очередь, является следствием концентрационных изменений в поверхностном слое или связан с разогреванием приэлектродного пространства при прохождении электрического тока. Естественная конвекция может быть вызвана также выделением газообразных продуктов электродных реакций. Искусственную конвекцию создают перемешиванием электролита или вращением самого электрода. Конвекция не может устранить диффузию, так как по мере приближения к электроду скорость движения жидкости относительно его поверхности падает, а градиент концентрации возрастает. Поэтому чем ближе к поверхности, тем большую роль в процессе массопереноса играет диффузионный механизм. [c.172]

    Диффузия при естественной конвекции. В процессе диффузии естественная конвекция может возникнуть под действием силы тяжести, если возникновение градиента концентрации приводит к градиенту плотности. Пусть в раствор с концентрацией вещества вертикально опущена пластина, на поверхности которой идет реакция. В результате этого вблизи поверхности С<С , р отличается от р (Сц) в объеме и под действием силы тяжести возникает поток жидкости. Пусть ось X направлена вдоль пластины, у — [c.257]

    Конвективная диффузия представляет собой перенос частиц растворенного вещества вместе с потоком движущейся жидкости. Движение жидкости -возникает при этом или самопроизвольно в результате неодинаковой плотности расгвора в отдельных его частях, т. е. в результате существования градиента плотности (Зр/с1л (естественная конвекция), или искусственн З при перемешивании и циркуляции (принудительная конвекция). [c.302]

    В тех случаях, когда панравленпе естественной конвекции совпадает с вынужденным движением тепловых агентов в аппарате, полностью соблюдается закон Паскаля давление, производимое иа жидкость илп газ, распространяется по всем направлениям равномерно и одинаково. Вследствие этого будет выполняться одно из основных условий эффективной тенлонередачи — равномерное обтекание потоком теплообменных поверхностей. Поэтому следует обвязывать теплообменные аппараты трубопроводами так, чтобы нагреваемый агент двигался снизу вверх, а охлаждаемый — сверху вниз. [c.86]

    Когда происходит теплообмен между однофазными потокаш (неиснаряющиеся жидкости или неконденсирующиеся газы), отступление от этого принцппа, ради удобства трубной обвязки теплообменника, почти не сказывается на эффективности теплопередачи, так как среды физически однородны и влияние конвекции на тенло-съем незначительно. Если же теплообмен связан с исиарением или конденсацией, как это имеет место на установках гидроочпстки, принцип направленной конвекции должен соблюдаться обязательно. В противном случае силы естественной конвекции будут направлены против движения потока (рис. 19). Из-за резкого различия физи- [c.86]

    Естественная конвекция носит всегда явно выраженный ламинарный характер. Однако, если поверхность нагрева имеет большую высоту, то поток нагретой жидкости или газа по мере удаления от нижней грани перестает быть спокойным и может стать турбулентным в некоторых случаях он может даже отделиться от стенки. Поэтому коэффициент теплоотдачи а не является постоянным на всем протяжении вертикальной плиты или трубки (фиг. 17). На кижней границе величина коэффициента теплоотдачи велика, по мере подъема по стенке а постепенно уменьшается, так как увеличивается толщина лам1Инарно перемещающегося вдоль стенки потока жидкости. Если пограничный слой становится турбулентным, то указанный коэффициент вновь повышается. Теоретически выведенное для местного коэффициента теплоотдачи а уравнение, правильность которого была проверена измерениями температурного и скоростного полей у вертикальной стенки, содержит в данном случае, по.лшмо разности температур А/, значение высоты плиты или поверхности Я  [c.34]

    А. Тепло- и массопереиос к твердым телам и жидким средам прн внешнем обтекании тел и течении в каналах, при вынужденной и естественной конвекции. Перенос теплоты к твердым телам и жидким средам при ламинарном течении с заданными граничными условиями или условиями сопряжения полностью описывается законом теплопроводности Фурье, если только тепловые потоки не превышают своих физических пределов (фононный, молекулярный, электронный перенос н т. д.). Возможность решения сложных задач в большей или меньшей степени зависит только от наличия необходимой вычислительной техники. Для расчета ламинарных течений, включая и снарядный режим, к настоящему времени разработано достаточно много стандартных про1-рамм, и их число продолжает непрерывно увеличиваться. Случай движущихся тел включает в себя также и покоящиеся тела, так как координатную систему можно связать с телом и, таким образом, исключить относительное движение. Поэтому методы расчета теплопередачи к твердым телам и жидким средам при их ламинарном течении полностью аналогичны. Единственным фактором, влияющим на тепловой поток как при нестационарном нагреве твердого тела, так и при квазистационар-ном ламинарном течении, является время контакта. Хотя часто коэффициент теплоотдачи нри ламинарном течении представляется как функция скорости, необходимо обязательно помнить, что скорость течения есть только мера времени контакта или времени пребывания среды в теплообменнике. Эта концепция обсуждалась в 2.1.4, где было показано, каким образом и — а-метод, используемый обычно для описания ламинарного теплообмена, можно применить и для расчета нестационарного теплопереноса а твердом теле. В разд. 2.4 эта концепция получает даль- [c.92]

    Э(1)фекты естественной конвекции становятся особенно важными для большого теплового потока, приводящего к большому перепаду температур в жидкости. При этом, как правило, приходится учитывать переменность тепло-фнзическнх свойств (см. [12] и следующий раздел). [c.125]

    Зигель и Норрис [37] исследовали теплообмен посредством естественной конвекции в частично замкнутых пространствах между вертикальными параллельными пластинами, а Глоб и Дропкин [38] — в жидкостях, заключенных между двумя горизонтальными пластинами, подогреваемых снизу. Обзор проблем, связанных с естественной конвекцией в горизонтальных слоях теплоносителя, подогреваемого снизу, приводится Острахом [39]. На основании этих и аналогичных теоретических и экспериментальных работ становится ясно, что число Грасгофа является важным параметром, связывающим тепловой поток с размерами системы и свойствами теплоносителя. Этот параметр определяется следующим образом  [c.65]

    Перемешивание вдоль оси аппарата при этом, в свою очередь, может вызываться самыми разнообразными причинами. Оно может происходить под действием механической мешалки или вследствие естественной конвекции, обусловленной разностью плотностей жидкости в различных точках (например, в выпарных аппаратах с естественной циркуляцией, описанных в главе IX). Оно может быть также обусловлено турбулентной диффузией или увлечением частиц потока одной из фаз потоком другой фазы при их противоточном взаимодействии (например, при захвате некоторой доли двужущейся вниз жидкости поднимающимися пузырями газа при барботаже) и другими причинами. [c.120]

    Таким образом, критерий Ог является, подобно критериям Галилея (Оа) и Аррмеда (Аг), аналогом критерия Фруда. Критерий Ог представляет собой определяющий критерий теплового подобия при естественной конвекции, когда движение жидкости целиком обусловлено самим процессом теплообмена. Критерий Грасгофа можно рассматривать как меру отношения сил трения к подъемной силе, определяемой разностью плотностей в различных точках неизотермического потока. [c.282]


Смотреть страницы где упоминается термин Естественная конвекция потоке: [c.56]    [c.222]    [c.98]    [c.128]    [c.295]    [c.312]    [c.273]    [c.167]    [c.178]    [c.167]   
Теплопередача и теплообменники (1961) -- [ c.341 , c.345 ]

Теплопередача и теплообменники (1961) -- [ c.341 , c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ теплоотдачи в свободно движущемся ламинарном потоке (естественная конвекция)

Диффузионный поток при естественной конвекции

Конвекция

Конвекция естественная

Поток естественный

Структура потоков при естественной конвекции

Толщина слоя в свободно движущемся ламинарном потоке (естественная конвекция)



© 2025 chem21.info Реклама на сайте